879 resultados para Developmental Robotics
Resumo:
Meng, Q., & Lee, M. (2005). Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics. Wermter, S., Palm, G., & Elshaw, M. (Eds.), In: Biomimetic Neural Learning for Intelligent Robots: Intelligent Systems, Cognitive Robotics, and Neuroscience. (pp. 315-332). (Lecture Notes in Computer Science). Springer Berlin Heidelberg.
Resumo:
Q. Meng and M. H. Lee, Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics, AI-Workshop on NeuroBotics, University of Ulm, Germany. September 2004.
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'Staged Competence Learning in Developmental Robotics', Adaptive Behavior, 15(3), pp 241-255, 2007. the full text will be available in September 2008
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'A Content-Neutral Approach for Sensory-Motor Learning in Developmental Robotics', EpiRob'06: Sixth International Conference on Epigenetic Robotics, Paris, 55-62, 2006.
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'Developmental Learning for Autonomous Robots', Robotics and Autonomous Systems, 55(9), pp 750-759, 2007.
Resumo:
Traditional approaches to the use of machine learning algorithms do not provide a method to learn multiple tasks in one-shot on an embodied robot. It is proposed that grounding actions within the sensory space leads to the development of action-state relationships which can be re-used despite a change in task. A novel approach called an Experience Network is developed and assessed on a real-world robot required to perform three separate tasks. After grounded representations were developed in the initial task, only minimal further learning was required to perform the second and third task.
Resumo:
It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain.
Resumo:
Lee, M., Meng, Q. (2005). Psychologically Inspired Sensory-Motor Development in Early Robot Learning. International Journal of Advanced Robotic Systems, 325-334.
Resumo:
R. Gunstone and M.H. Lee, (2002) Constraining Developmental Learning via Imitation, in proc. ?Biologically-Inspired Robotics: The Legacy of W. Grey Walter? (WGW'02), EPSRC/BBSRC International Workshop, pp158-165, 14-16 August 2002, HP labs, Bristol.
Resumo:
Q. Meng and M. H. Lee, 'Construction of Robot Intra-modal and Inter-modal Coordination Skills by Developmental Learning', Journal of Intelligent and Robotic Systems, 48(1), pp 97-114, 2007.
Resumo:
A novel memory-based embodied cognitive architecture is introduced – the MBC architecture. It is founded upon neuropsychological theory, and may be applied to investigating the interplay of embodiment, autonomy, and environmental interaction as related to the development of cognition.
Resumo:
This paper presents the Smarty Board; a new micro-controller board designed specifically for the robotics teaching needs of Australian schools. The primary motivation for this work was the lack of commercially available and cheap controller boards that would have all their components including interfaces on a single board. Having a single board simplifies the construction of programmable robots that can be used as platforms for teaching and learning robotics. Reducing the cost of the board as much as possible was one of the main design objectives. The target user groups for this device are the secondary and tertiary students, and hobbyists. Previous studies have shown that equipment cost is one of the major obstacles for teaching robotics in Australia. The new controller board was demonstrated at high-school seminars. In these demonstrations the new controller board was used for controlling two robots that we built. These robots are available as kits. Given the strong demand from high-school teachers, new kits will be developed for the next robotic Olympiad to be held in Australia in 2006.