940 resultados para Detector alignment and calibration methods (lasers, sources, particle-beams)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare two yeast identification methods, i. e, the manual and the VITEK mechanical methods, 62 clinical samples from hemocultures and animal sources were analyzed. After identification as Candida yeasts by the VITEK method, the strains were recharacterized using manual assimilation methods and sugar fermentation tests. Our findings reveal 58% concurrent identification between the two methods for animal strains, and 51% for human hemoculture strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the calibration and comparison of two systems, a machine vision system that uses 3 channel RGB images and a line scanning spectral system. Calibration. is the process of checking and adjusting the accuracy of a measuring instrument by comparing it with standards. For the RGB system self-calibrating methods for finding various parameters of the imaging device were developed. Color calibration was done and the colors produced by the system were compared to the known colors values of the target. Software drivers for the Sony Robot were also developed and a mechanical part to connect a camera to the robot was also designed. For the line scanning spectral system, methods for the calibrating the alignment of the system and the measurement of the dimensions of the line scanned by the system were developed. Color calibration of the spectral system is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contains state personal income estimates for the years covered, arranged in tabular form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03–0.8 ng for the GC-MS and between 0.03–2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03 - 0.8 ng for the GC-MS and between 0.03 - 2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the scope of the European project Hydroptimet, INTERREG IIIB-MEDOCC programme, limited area model (LAM) intercomparison of intense events that produced many damages to people and territory is performed. As the comparison is limited to single case studies, the work is not meant to provide a measure of the different models' skill, but to identify the key model factors useful to give a good forecast on such a kind of meteorological phenomena. This work focuses on the Spanish flash-flood event, also known as "Montserrat-2000" event. The study is performed using forecast data from seven operational LAMs, placed at partners' disposal via the Hydroptimet ftp site, and observed data from Catalonia rain gauge network. To improve the event analysis, satellite rainfall estimates have been also considered. For statistical evaluation of quantitative precipitation forecasts (QPFs), several non-parametric skill scores based on contingency tables have been used. Furthermore, for each model run it has been possible to identify Catalonia regions affected by misses and false alarms using contingency table elements. Moreover, the standard "eyeball" analysis of forecast and observed precipitation fields has been supported by the use of a state-of-the-art diagnostic method, the contiguous rain area (CRA) analysis. This method allows to quantify the spatial shift forecast error and to identify the error sources that affected each model forecasts. High-resolution modelling and domain size seem to have a key role for providing a skillful forecast. Further work is needed to support this statement, including verification using a wider observational data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of tunneling with groundwater is a problem both from an environmental and an engineering point of view. In fact, tunnel drilling may cause a drawdown of piezometric levels and water inflows into tunnels that may cause problems during excavation of the tunnel. While the influence of tunneling on the regional groundwater systems may be adequately predicted in porous media using analytical solutions, such an approach is difficult to apply in fractured rocks. Numerical solutions are preferable and various conceptual approaches have been proposed to describe and model groundwater flow through fractured rock masses, ranging from equivalent continuum models to discrete fracture network simulation models. However, their application needs many preliminary investigations on the behavior of the groundwater system based on hydrochemical and structural data. To study large scale flow systems in fractured rocks of mountainous terrains, a comprehensive study was conducted in southern Switzerland, using as case studies two infrastructures actually under construction: (i) the Monte Ceneri base railway tunnel (Ticino), and the (ii) San Fedele highway tunnel (Roveredo, Graubiinden). The chosen approach in this study combines the temporal and spatial variation of geochemical and geophysical measurements. About 60 localities from both surface and underlying tunnels were temporarily and spatially monitored during more than one year. At first, the project was focused on the collection of hydrochemical and structural data. A number of springs, selected in the area surrounding the infrastructures, were monitored for discharge, electric conductivity, pH, and temperature. Water samples (springs, tunnel inflows and rains) were taken for isotopic analysis; in particular the stable isotope composition (δ2Η, δ180 values) can reflect the origin of the water, because of spatial (recharge altitude, topography, etc.) and temporal (seasonal) effects on precipitation which in turn strongly influence the isotopic composition of groundwater. Tunnel inflows in the accessible parts of the tunnels were also sampled and, if possible, monitored with time. Noble-gas concentrations and their isotope ratios were used in selected locations to better understand the origin and the circulation of the groundwater. In addition, electrical resistivity and VLF-type electromagnetic surveys were performed to identify water bearing fractures and/or weathered areas that could be intersected at depth during tunnel construction. The main goal of this work was to demonstrate that these hydrogeological data and geophysical methods, combined with structural and hydrogeological information, can be successfully used in order to develop hydrogeological conceptual models of the groundwater flow in regions to be exploited for tunnels. The main results of the project are: (i) to have successfully tested the application of electrical resistivity and VLF-electromagnetic surveys to asses water-bearing zones during tunnel drilling; (ii) to have verified the usefulness of noble gas, major ion and stable isotope compositions as proxies for the detection of faults and to understand the origin of the groundwater and its flow regimes (direct rain water infiltration or groundwater of long residence time); and (iii) to have convincingly tested the combined application of a geochemical and geophysical approach to assess and predict the vulnerability of springs to tunnel drilling. - L'interférence entre eaux souterraines et des tunnels pose des problèmes environnementaux et de génie civile. En fait, la construction d'un tunnel peut faire abaisser le niveau des nappes piézométriques et faire infiltrer de l'eau dans le tunnel et ainsi créer des problème pendant l'excavation. Alors que l'influence de la construction d'un tunnel sur la circulation régionale de l'eau souterraine dans des milieux poreux peut être prédite relativement facilement par des solution analytiques de modèles, ceci devient difficile dans des milieux fissurés. Dans ce cas-là, des solutions numériques sont préférables et plusieurs approches conceptuelles ont été proposées pour décrire et modéliser la circulation d'eau souterraine à travers les roches fissurées, en allant de modèles d'équivalence continue à des modèles de simulation de réseaux de fissures discrètes. Par contre, leur application demande des investigations importantes concernant le comportement du système d'eau souterraine basées sur des données hydrochimiques et structurales. Dans le but d'étudier des grands systèmes de circulation d'eau souterraine dans une région de montagnes, une étude complète a été fait en Suisse italienne, basée sur deux grandes infrastructures actuellement en construction: (i) Le tunnel ferroviaire de base du Monte Ceneri (Tessin) et (ii) le tunnel routière de San Fedele (Roveredo, Grisons). L'approche choisie dans cette étude est la combinaison de variations temporelles et spatiales des mesures géochimiques et géophysiques. Environs 60 localités situées à la surface ainsi que dans les tunnels soujacents ont été suiviès du point de vue temporel et spatial pendant plus de un an. Dans un premier temps le projet se focalisait sur la collecte de données hydrochimiques et structurales. Un certain nombre de sources, sélectionnées dans les environs des infrastructures étudiées ont été suivies pour le débit, la conductivité électrique, le pH et la température. De l'eau (sources, infiltration d'eau de tunnel et pluie) a été échantillonnés pour des analyses isotopiques; ce sont surtout les isotopes stables (δ2Η, δ180) qui peuvent indiquer l'origine d'une eaux, à cause de la dépendance d'effets spatiaux (altitude de recharge, topographie etc.) ainsi que temporels (saisonaux) sur les précipitations météoriques , qui de suite influencent ainsi la composition isotopique de l'eau souterraine. Les infiltrations d'eau dans les tunnels dans les parties accessibles ont également été échantillonnées et si possible suivies au cours du temps. La concentration de gaz nobles et leurs rapports isotopiques ont également été utilisées pour quelques localités pour mieux comprendre l'origine et la circulation de l'eau souterraine. En plus, des campagnes de mesures de la résistivité électrique et électromagnétique de type VLF ont été menées afin d'identifier des zone de fractures ou d'altération qui pourraient interférer avec les tunnels en profondeur pendant la construction. Le but principal de cette étude était de démontrer que ces données hydrogéologiques et géophysiques peuvent être utilisées avec succès pour développer des modèles hydrogéologiques conceptionels de tunnels. Les résultats principaux de ce travail sont : i) d'avoir testé avec succès l'application de méthodes de la tomographie électrique et des campagnes de mesures électromagnétiques de type VLF afin de trouver des zones riches en eau pendant l'excavation d'un tunnel ; ii) d'avoir prouvé l'utilité des gaz nobles, des analyses ioniques et d'isotopes stables pour déterminer l'origine de l'eau infiltrée (de la pluie par le haut ou ascendant de l'eau remontant des profondeurs) et leur flux et pour déterminer la position de failles ; et iii) d'avoir testé d'une manière convainquant l'application combinée de méthodes géochimiques et géophysiques pour juger et prédire la vulnérabilité de sources lors de la construction de tunnels. - L'interazione dei tunnel con il circuito idrico sotterraneo costituisce un problema sia dal punto di vista ambientale che ingegneristico. Lo scavo di un tunnel puô infatti causare abbassamenti dei livelli piezometrici, inoltre le venute d'acqua in galleria sono un notevole problema sia in fase costruttiva che di esercizio. Nel caso di acquiferi in materiale sciolto, l'influenza dello scavo di un tunnel sul circuito idrico sotterraneo, in genere, puô essere adeguatamente predetta attraverso l'applicazione di soluzioni analitiche; al contrario un approccio di questo tipo appare inadeguato nel caso di scavo in roccia. Per gli ammassi rocciosi fratturati sono piuttosto preferibili soluzioni numeriche e, a tal proposito, sono stati proposti diversi approcci concettuali; nella fattispecie l'ammasso roccioso puô essere modellato come un mezzo discreto ο continuo équivalente. Tuttavia, una corretta applicazione di qualsiasi modello numerico richiede necessariamente indagini preliminari sul comportamento del sistema idrico sotterraneo basate su dati idrogeochimici e geologico strutturali. Per approfondire il tema dell'idrogeologia in ammassi rocciosi fratturati tipici di ambienti montani, è stato condotto uno studio multidisciplinare nel sud della Svizzera sfruttando come casi studio due infrastrutture attualmente in costruzione: (i) il tunnel di base del Monte Ceneri (canton Ticino) e (ii) il tunnel autostradale di San Fedele (Roveredo, canton Grigioni). L'approccio di studio scelto ha cercato di integrare misure idrogeochimiche sulla qualité e quantité delle acque e indagini geofisiche. Nella fattispecie sono state campionate le acque in circa 60 punti spazialmente distribuiti sia in superficie che in sotterraneo; laddove possibile il monitoraggio si è temporalmente prolungato per più di un anno. In una prima fase, il progetto di ricerca si è concentrato sull'acquisizione dati. Diverse sorgenti, selezionate nelle aree di possibile influenza attorno allé infrastrutture esaminate, sono state monitorate per quel che concerne i parametri fisico-chimici: portata, conduttività elettrica, pH e temperatura. Campioni d'acqua sono stati prelevati mensilmente su sorgenti, venute d'acqua e precipitazioni, per analisi isotopiche; nella fattispecie, la composizione in isotopi stabili (δ2Η, δ180) tende a riflettere l'origine delle acque, in quanto, variazioni sia spaziali (altitudine di ricarica, topografia, etc.) che temporali (variazioni stagionali) della composizione isotopica delle precipitazioni influenzano anche le acque sotterranee. Laddove possibile, sono state campionate le venute d'acqua in galleria sia puntualmente che al variare del tempo. Le concentrazioni dei gas nobili disciolti nell'acqua e i loro rapporti isotopici sono stati altresi utilizzati in alcuni casi specifici per meglio spiegare l'origine delle acque e le tipologie di circuiti idrici sotterranei. Inoltre, diverse indagini geofisiche di resistività elettrica ed elettromagnetiche a bassissima frequenza (VLF) sono state condotte al fine di individuare le acque sotterranee circolanti attraverso fratture dell'ammasso roccioso. Principale obiettivo di questo lavoro è stato dimostrare come misure idrogeochimiche ed indagini geofisiche possano essere integrate alio scopo di sviluppare opportuni modelli idrogeologici concettuali utili per lo scavo di opere sotterranee. I principali risultati ottenuti al termine di questa ricerca sono stati: (i) aver testato con successo indagini geofisiche (ERT e VLF-EM) per l'individuazione di acque sotterranee circolanti attraverso fratture dell'ammasso roccioso e che possano essere causa di venute d'acqua in galleria durante lo scavo di tunnel; (ii) aver provato l'utilità di analisi su gas nobili, ioni maggiori e isotopi stabili per l'individuazione di faglie e per comprendere l'origine delle acque sotterranee (acque di recente infiltrazione ο provenienti da circolazioni profonde); (iii) aver testato in maniera convincente l'integrazione delle indagini geofisiche e di misure geochimiche per la valutazione della vulnérabilité delle sorgenti durante lo scavo di nuovi tunnel. - "La NLFA (Nouvelle Ligne Ferroviaire à travers les Alpes) axe du Saint-Gothard est le plus important projet de construction de Suisse. En bâtissant la nouvelle ligne du Saint-Gothard, la Suisse réalise un des plus grands projets de protection de l'environnement d'Europe". Cette phrase, qu'on lit comme présentation du projet Alptransit est particulièrement éloquente pour expliquer l'utilité des nouvelles lignes ferroviaires transeuropéens pour le développement durable. Toutefois, comme toutes grandes infrastructures, la construction de nouveaux tunnels ont des impacts inévitables sur l'environnement. En particulier, le possible drainage des eaux souterraines réalisées par le tunnel peut provoquer un abaissement du niveau des nappes piézométriques. De plus, l'écoulement de l'eau à l'intérieur du tunnel, conduit souvent à des problèmes d'ingénierie. Par exemple, d'importantes infiltrations d'eau dans le tunnel peuvent compliquer les phases d'excavation, provoquant un retard dans l'avancement et dans le pire des cas, peuvent mettre en danger la sécurité des travailleurs. Enfin, l'infiltration d'eau peut être un gros problème pendant le fonctionnement du tunnel. Du point de vue de la science, avoir accès à des infrastructures souterraines représente une occasion unique d'obtenir des informations géologiques en profondeur et pour échantillonner des eaux autrement inaccessibles. Dans ce travail, nous avons utilisé une approche pluridisciplinaire qui intègre des mesures d'étude hydrogéochimiques effectués sur les eaux de surface et des investigations géophysiques indirects, tels que la tomographic de résistivité électrique (TRE) et les mesures électromagnétiques de type VLF. L'étude complète a été fait en Suisse italienne, basée sur deux grandes infrastructures actuellement en construction, qui sont le tunnel ferroviaire de base du Monte Ceneri, une partie du susmentionné projet Alptransit, situé entièrement dans le canton Tessin, et le tunnel routière de San Fedele, situé a Roveredo dans le canton des Grisons. Le principal objectif était de montrer comment il était possible d'intégrer les deux approches, géophysiques et géochimiques, afin de répondre à la question de ce que pourraient être les effets possibles dû au drainage causés par les travaux souterrains. L'accès aux galeries ci-dessus a permis une validation adéquate des enquêtes menées confirmant, dans chaque cas, les hypothèses proposées. A cette fin, nous avons fait environ 50 profils géophysiques (28 imageries électrique bidimensionnels et 23 électromagnétiques) dans les zones de possible influence par le tunnel, dans le but d'identifier les fractures et les discontinuités dans lesquelles l'eau souterraine peut circuler. De plus, des eaux ont été échantillonnés dans 60 localités situées la surface ainsi que dans les tunnels subjacents, le suivi mensuelle a duré plus d'un an. Nous avons mesurés tous les principaux paramètres physiques et chimiques: débit, conductivité électrique, pH et température. De plus, des échantillons d'eaux ont été prélevés pour l'analyse mensuelle des isotopes stables de l'hydrogène et de l'oxygène (δ2Η, δ180). Avec ces analyses, ainsi que par la mesure des concentrations des gaz rares dissous dans les eaux et de leurs rapports isotopiques que nous avons effectués dans certains cas spécifiques, il était possible d'expliquer l'origine des différents eaux souterraines, les divers modes de recharge des nappes souterraines, la présence de possible phénomènes de mélange et, en général, de mieux expliquer les circulations d'eaux dans le sous-sol. Le travail, même en constituant qu'une réponse partielle à une question très complexe, a permis d'atteindre certains importants objectifs. D'abord, nous avons testé avec succès l'applicabilité des méthodes géophysiques indirectes (TRE et électromagnétiques de type VLF) pour prédire la présence d'eaux souterraines dans le sous-sol des massifs rocheux. De plus, nous avons démontré l'utilité de l'analyse des gaz rares, des isotopes stables et de l'analyses des ions majeurs pour la détection de failles et pour comprendre l'origine des eaux souterraines (eau de pluie par le haut ou eau remontant des profondeurs). En conclusion, avec cette recherche, on a montré que l'intégration des ces informations (géophysiques et géochimiques) permet le développement de modèles conceptuels appropriés, qui permettant d'expliquer comment l'eau souterraine circule. Ces modèles permettent de prévoir les infiltrations d'eau dans les tunnels et de prédire la vulnérabilité de sources et des autres ressources en eau lors de construction de tunnels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.