946 resultados para Detecção e Diagnóstico de Falhas (FDD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection and diagnosis of faults, ie., find out how , where and why failures occur is an important area of study since man came to be replaced by machines. However, no technique studied to date can solve definitively the problem. Differences in dynamic systems, whether linear, nonlinear, variant or invariant in time, with physical or analytical redundancy, hamper research in order to obtain a unique solution . In this paper, a technique for fault detection and diagnosis (FDD) will be presented in dynamic systems using state observers in conjunction with other tools in order to create a hybrid FDD. A modified state observer is used to create a residue that allows also the detection and diagnosis of faults. A bank of faults signatures will be created using statistical tools and finally an approach using mean squared error ( MSE ) will assist in the study of the behavior of fault diagnosis even in the presence of noise . This methodology is then applied to an educational plant with coupled tanks and other with industrial instrumentation to validate the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The industries are getting more and more rigorous, when security is in question, no matter is to avoid financial damages due to accidents and low productivity, or when it s related to the environment protection. It was thinking about great world accidents around the world involving aircrafts and industrial process (nuclear, petrochemical and so on) that we decided to invest in systems that could detect fault and diagnosis (FDD) them. The FDD systems can avoid eventual fault helping man on the maintenance and exchange of defective equipments. Nowadays, the issues that involve detection, isolation, diagnose and the controlling of tolerance fault are gathering strength in the academic and industrial environment. It is based on this fact, in this work, we discuss the importance of techniques that can assist in the development of systems for Fault Detection and Diagnosis (FDD) and propose a hybrid method for FDD in dynamic systems. We present a brief history to contextualize the techniques used in working environments. The detection of fault in the proposed system is based on state observers in conjunction with other statistical techniques. The principal idea is to use the observer himself, in addition to serving as an analytical redundancy, in allowing the creation of a residue. This residue is used in FDD. A signature database assists in the identification of system faults, which based on the signatures derived from trend analysis of the residue signal and its difference, performs the classification of the faults based purely on a decision tree. This FDD system is tested and validated in two plants: a simulated plant with coupled tanks and didactic plant with industrial instrumentation. All collected results of those tests will be discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research aims at contributing to the area of detection and diagnosis of failure through the proposal of a new system architecture of detection and isolation of failures (FDI, Fault Detection and Isolation). The proposed architecture presents innovations related to the way the physical values monitored are linked to the FDI system and, as a consequence, the way the failures are detected, isolated and classified. A search for mathematical tools able to satisfy the objectives of the proposed architecture has pointed at the use of the Kalman Filter and its derivatives EKF (Extended Kalman Filter) and UKF (Unscented Kalman Filter). The use of the first one is efficient when the monitored process presents a linear relation among its physical values to be monitored and its out-put. The other two are proficient in case this dynamics is no-linear. After that, a short comparative of features and abilities in the context of failure detection concludes that the UFK system is a better alternative than the EKF one to compose the architecture of the FDI system proposed in case of processes of no-linear dynamics. The results shown in the end of the research refer to the linear and no-linear industrial processes. The efficiency of the proposed architecture may be observed since it has been applied to simulated and real processes. To conclude, the contributions of this thesis are found in the end of the text

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master dissertation presents the development of a fault detection and isolation system based in neural network. The system is composed of two parts: an identification subsystem and a classification subsystem. Both of the subsystems use neural network techniques with multilayer perceptron training algorithm. Two approaches for identifica-tion stage were analyzed. The fault classifier uses only residue signals from the identification subsystem. To validate the proposal we have done simulation and real experiments in a level system with two water reservoirs. Several faults were generated above this plant and the proposed fault detection system presented very acceptable behavior. In the end of this work we highlight the main difficulties found in real tests that do not exist when it works only with simulation environments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A automatização dos processos industriais, onde os acionamentos eletromecânicos representam a sua principal componente, levou à necessidade destes equipamentos funcionarem de forma ininterrupta. No entanto, nenhum acionamento está isento da ocorrência de uma falha, ou de uma combinação de falhas simultâneas, resultando num deficiente funcionamento ou mesmo na sua paragem. Neste contexto, a máquina de indução hexafásica apresenta-se especialmente indicada, pelas vantagens que o aumento do número de fases possibilita, para sistemas que requerem uma elevada disponibilidade. O trabalho apresentado nesta dissertação tem como objetivo principal o estudo da deteção e diagnóstico de falhas num acionamento baseado em máquina de indução hexafásica. A metodologia adotada no trabalho baseia-se no desenvolvimento de um modelo matemático adequado à simulação e análise do funcionamento da máquina hexafásica, em modo normal e com falha, e no desenvolvimento de estratégias/métodos de deteção e diagnóstico de falhas, quer para a máquina de indução hexafásica quer para o respetivo inversor. Os métodos propostos são baseados na análise de padrões das correntes de fases. Deste trabalho resultou ainda a implementação de um protótipo laboratorial de acionamento hexafásico. Os resultados obtidos por simulação e provenientes dos ensaios experimentais permitem validar o modelo proposto para a máquina de indução hexafásica, em modo normal e com falha, assim como os métodos de deteção e diagnóstico de falhas propostos. É ainda analisada a capacidade de funcionamento do acionamento desenvolvido em modo de falha

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho investiga a aplicação de métodos e técnicas de correlação de alarmes na detecção e diagnóstico de falhas em sistemas supervisionados por computador. Atualmente, alguns centros de supervisão ainda não se utilizam destas técnicas para o tratamento das informações recebidas de suas redes de supervisão, ficando para os operadores a responsabilidade de identificar estas correlações. Com o crescente volume de informações recebidas pelos centros de supervisão, devido ao aumento da heterogeneidade e do número de equipamentos supervisionados, torna a identificação manual da correlação dos alarmes lenta e pouco precisa. Objetivando melhorar a qualidade do serviços prestados pelos centros de supervisões, este trabalho propõe o uso de uma rede Bayesiana como método de correlação de alarmes e uma técnica de limitação de escopo para atingir uma melhor performance na propagação desta correlação. Através dos conceitos desenvolvidos neste trabalho, foi implementado um protótipo de correlação de alarmes para um sistema de supervisão existente no mercado, neste protótipo modela-se a rede Bayesiana em um banco de dados relacional e, como resultado desta implementação apresenta-se a interface desenvolvida para a supervisão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web services are software units that allow access to one or more resources, supporting the deployment of business processes in the Web. They use well-defined interfaces, using web standard protocols, making possible the communication between entities implemented on different platforms. Due to these features, Web services can be integrated as services compositions to form more robust loose coupling applications. Web services are subject to failures, unwanted situations that may compromise the business process partially or completely. Failures can occur both in the design of compositions as in the execution of compositions. As a result, it is essential to create mechanisms to make the implementation of service compositions more robust and to treat failures. Specifically, we propose the support for fault recovery in service compositions described in PEWS language and executed on PEWS-AM, an graph reduction machine. To support recovery failure on PEWS-AM, we extend the PEWS language specification and adapted the rules of translation and reduction of graphs for this machine. These contributions were made both in the model of abstract machine as at the implementation level

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)