996 resultados para Destilador solar


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of petroleum is frequently accomplished with great volumes of water, that it is carried of the underground with the oil. It is a challenge of the present century the development of technologies that allow the use of waste water for purposes that consume great amounts of water and don't demand as rigid as the one of the drinking water requirements. The solar distillation has been configuring as an alternative of clean technology for desalination of brine and saline. Besides causing the minimum possible damage to the environment, it takes advantage of an abundant and free energy source: the solar energy. That study aims to develop a Solar Distillator for treatment of the produced water of the oil wells, to obtain an efluent to use in agriculture and vapor generation. The methodology for collection, conservation and analysis of the physical-chemical parameters obeyed the norms in APHA (1995). The sampling was of the composed type. Experiments were accomplished in the solar distillation pilot and simulation in thermostatic bathing. The operation was in batch system and for periods of 4, 6 and 12 h. The developed Distillator is of the type simple effect of two waters. It was still tested two inclination angles for covering; 20º and 45º. The Distillator presented minimum of 2,85 L/m2d revenues and maximum of 7,14 L/m2d. The removals of salts were great than 98%. The removal of TOC in the simulation was great than 90%. In agreement with the data of energy and mass balance, it was verified that the developed solar Distillator presented compatible revenues with those found in literature for similar types. It can be inferred that the obtained distilled water assists to the requirements CONAMA in almost all the points and could be used for irrigation of cultures such as cotton and mamona. As the distilled water has characteristics of fresh water it can be used in the generation of vapor

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de mest., Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O presente trabalho visou a utilização da energia solar na cura de pré-fabricados de concreto. Para tanto, foi utilizado dois modelos. O primeiro modelo constou da utilização de coletores solares planos, ligados até uma câmara de cura por um sistema de dutos; A radiação direta do sol incide sobre os coletores, que acumulam energia, que é removida pela água que circula pelos mesmos, levando essa energia através do sistema de distribuição (dutos) até a câmara de cura; Essa câmara, possui uma pista metálica em sua base, onde a energia é cedida para os pré-fabricados de concreto; Esse ciclo de captação distribuição e consumo é repetido a cada hora do dia, onde há radiação solar; Um segundo modelo constou de uma heliocâmara, princípio de um destilador solar convencional, onde a radiação incide diretamente sobre a câmara de cura; A radiação, penetra pela cobertura e forma-se um efeito estufa no interior da câmara, aquecendo seu interior e consequentemente os pré-fabricados de concreto; Avaliou-se os dois sistemas para as estações de verão e inverno na cidade de Porto Alegre (dias típicos) e concluiu-se que para o verão, tanto o sistema com coletores solares quanto o sistema com heliocâmaras poderão ser utilizados. No período de inverno, nenhum destes sistemas serão satisfatórios, porém suas utilizações serão viáveis em conjunto com uma fonte de energia alternativa; A energia solar constitui-se assim numa importante fonte de energia a ser utilizada em pré-fabricados de concreto.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to the increasing need to promote the use of resources that support the environment and the clean industry, the science has developed in the area of natural resource use as well as enhanced use of the renewable energy sources. Considering also the great need for clean water and wide availability of salt or brackish water, added to the great solar energy potential in northeastern of the Brazil, it was developed a solar distiller whose main difference is its system of pre-solar heating also. From experimental adjustments, the system was developed by the use of a cylindrical solar concentrator coupled to a conventional distiller. The system is designed such that attempt to facilitate the process termination trap to ensure constant movement of the fluid mass and thus enable higher temperatures to the system and thus fetch a higher amount of distillate collected. In a stage of the experiment were used a forced circulation to try to further increase the amount of energy exchange system. To develop the study were set up four settings for comparison in which one was only distiller simple as basic parameter, the second proposed configuration were with the coupling of the concentration triggered manually every 30 minutes to monitor the sun, the third configuration occurred with automatic triggering of a timer, and the fourth configuration was also used a pumping system that tried to improve the circulation of the fluid. With the comparative analysis of the results showed a gain in the amount of distillate system, especially in the forced model

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se propone una práctica sobre ahorro energético para realizar en el seminario de física y química de los institutos de bachillerato, basado en la construcción de un destilador solar, que aparte de su valor formativo, permite la obtención gratuita del agua necesaria para los experimentos en el laboratorio de química.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work study of solar distillation feasibility in effluent of petroleum industry: produced water, making possible your reuse for irrigation of oleaginous cultures or fodder crops or in steam generation, as well the transport phenomena involved. The methodology for development of this project was to characterize the effluent to be treated and to accomplish physical and chemical analysis in the distilled, to build distillation equipment, concomitant operation of both equipments and implementation of data processing and economical evaluation. The methodology used for all parameters is outlined in APHA (1998) and sampling of the type compound. The feeding of distillation equipment was performed with treated effluent from UTPF of Guamaré. The temperature was monitored throughout the distillers and during the time of operation. The distillers feed occur, as a rule, for sifon. The distillers were operated by a period of 17 months between July 2007 and February 2009, in which 40 experiments were performed. The radiation and temperature datas were acquired in the INPE s site and the temperature inside of the distillers was registered by DATALOGGER Novus. The rates of condensation (mL / min) were determined by measuring of the flow in a graduate test tube of 10 mL and a chronometer. We used two simple solar effect distillers of passive type with different angles in coverage: 20 ° and 45 °. The results obtained in this study and the relevant discussions are divided into six topics: sample characterization and quality of distilled; construction of distillers; operation (data, temperature profile), climatic aspects, treatment of data and economical analysis. Results obtained can be inferred that: the energy loss by the adoption of vessel glass was not significant, however, complicates the logistics of maintenance the equipment on a large scale. In the other hand, the surface of the tub with a glass shield on the equipment deterioration, both devices showed similar performance, so there is not justified for use of equipment 450. With regard to the climatological study it was verified that the Natal city presents monthly medium radiation varying in a range between 350 and 600 W/m2, and medium of wind speed of 5 m / s. The medium humidity is around 70% and rainfall is very small. The regime of the system is transient and although it has been treated as a stationary system shows that the model accurately represents the distillers system's 20 degrees. The quality of the distilled with regard to the parameters evaluated in this study is consistent with the Class 3 waters of CONAMA (Resolution 357). Therefore we can conclude that solar distillation has viability for treat oilfield produced water when considered the technical and environmental aspects, although it is not economically viable

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: