996 resultados para Design formulae


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Partially grouted masonry walls subjected to in-plane shear exhibit a complex behaviour because of the influence of the aspect ratio, the pre-compression, the grouting pattern, the ratios of the horizontal and the vertical reinforcements, the boundary conditions and the characteristics of the constituent materials. The existing in-plane shear expressions for the partially grouted masonry are formulated as sum of strength of three parameters, namely, the masonry, the reinforcement and the axial force. The parameter ‘masonry’ includes the wall aspect ratio and the masonry compressive strength; the aspect ratio of the unreinforced panel inscribed into the grouted cores and bond beams are not considered, although failure is often dominated by these unreinforced masonry panels. This paper describes the dominance of these panels, particularly those that are squat, to the shear capacity of whole of shear walls. Further, the current design formulae are shown highly un-conservative by many researchers; this paper provides a potential reason for this un-conservativeness. It is shown that by including an additional term of the unreinforced panel aspect ratio a rational design formula could be established. This new expression is validated with independent test results reported in the literature – both Australian and overseas; the predictions are shown to be conservative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The profiled steel roof and wall cladding systems in Australia are commonly made of very thin high tensile steels, and are crest-fixed with screw fasteners. A review of current literature and design standards indicated the need to improve the understanding of the behaviour of crest-fixed steel cladding systems under wind uplift/suction loading, in particular, the local failures. Therefore a detailed experimental study using a series of small scale tests and some two-span cladding tests was conducted to investigate the local pull-through and dimpling failures in the commonly used steel cladding systems. The applicability of the current design formulae for the pull-through strength of crest-fixed steel classing systems was investigated first. An improved design formula was then developed in terms of the thickness and ultimate tensile strenth of steel cladding material and diameter of screw head or washer. This paper presents the details of this investigation and its results. A review of current design and test methods is also included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diaphragm action of crest-fixed profiled steel claddings is present in low-rise buildings whether the designer acknowledges it or not. For the designers to take advantage of the diaphragm strength of the crest-fixed steel claddings in the design of low-rise buildings in a similar manner to valley-fixed claddings, and to design the buildings based on the true behaviour rather than the assumed behaviour, shear/racking behaviour of the three trapezoidal and corrugated steel claddings commonly used at present was investigated using large scale experiments. Crest-fixed claddings (up to a maximum size of 6 x 6.2m) with different aspect ratio and fastening systems were tested to failure, based on which suitable shear strength and stiffness values have been proposed for these claddings as they are used at present. A simple analytical model combined with basic connection data from small scale experiments was used to predict the shear strength of tested panels. Currently attempts are being made to develop general design formulae to determine shear strength and stiffness of crest-fixed steel claddings...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Design equations are presented for calculating the resonance frequencies for a compact dual frequency arrow-shaped microstrip antenna. This provides a fast and simple way to predict the resonant frequencies of the antenna. The antenna is also analyzed using the IE3D simulation package. The theoretical predictions are found to be very close to the IE3D results and thus establish the validity of the design formulae

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Replacement of the traditional coil spring with one of more fibre-reinforced plastic sulcated springs is a future possibility. Spring designers of metallic coil springs have design formulae readily available, and software packages specific to coil spring design exist. However, the sulcated spring is at the prototype stage of development, so literature on these springs is very sparse. The thesis contains information on the market for sulcated springs, and their advantages and disadvantages. Literature on other types of fibre reinforced plastic springs has also been reviewed. Design software has been developed for the sulcated spring along similar lines to coil spring design software. In order to develop the software, a theoretical model had to be developed which formed the mathematical basis for the software. The theoretical model is based on a choice of four methods for calculating the flexural rigidity; beam theory, plate theory, and lamination theory assuming isotropic and orthoropic material properties. Experimental results for strain and spring stiffness have been compared with the theoretical model, and were in good agreement. Included in the design software are the results of experimental work on fatigue, and design limiting factors to prevent or warn against impractical designs. Finite element analysis has been used to verify the theoretical model developed, and to find the better approximation to the experimental results. Applications and types of assemblies for the sulcated spring were discussed. Sulcated spring designs for the automotive applications of a suspension, clutch and engine valve spring were found using the design computer software. These sulcated spring designs were within or close to the space of the existing coil spring and yield the same performance. Finally the commercial feasibility of manufacturing the sulcated spring was assessed and compared with the coil spring, to evaluate the plausibility of the sulcated spring replacing the coil spring eventually.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We design a particle interpretation of Feynman-Kac measures on path spaces based on a backward Markovian representation combined with a traditional mean field particle interpretation of the flow of their final time marginals. In contrast to traditional genealogical tree based models, these new particle algorithms can be used to compute normalized additive functionals "on-the-fly" as well as their limiting occupation measures with a given precision degree that does not depend on the final time horizon. We provide uniform convergence results with respect to the time horizon parameter as well as functional central limit theorems and exponential concentration estimates. Our results have important consequences for online parameter estimation for non-linear non-Gaussian state-space models. We show how the forward filtering backward smoothing estimates of additive functionals can be computed using a forward only recursion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study has been made of 22 different designs of four seam trawls operated at Cochin for shrimp trawling. Formulae for the relations between the different parts of the nets have been derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the comparison of two formulations in terms of average bioequivalence using the 2 × 2 cross-over design. In a bioequivalence study, the primary outcome is a pharmacokinetic measure, such as the area under the plasma concentration by time curve, which is usually assumed to have a lognormal distribution. The criterion typically used for claiming bioequivalence is that the 90% confidence interval for the ratio of the means should lie within the interval (0.80, 1.25), or equivalently the 90% confidence interval for the differences in the means on the natural log scale should be within the interval (-0.2231, 0.2231). We compare the gold standard method for calculation of the sample size based on the non-central t distribution with those based on the central t and normal distributions. In practice, the differences between the various approaches are likely to be small. Further approximations to the power function are sometimes used to simplify the calculations. These approximations should be used with caution, because the sample size required for a desirable level of power might be under- or overestimated compared to the gold standard method. However, in some situations the approximate methods produce very similar sample sizes to the gold standard method. Copyright © 2005 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most factorial experiments in industrial research form one stage in a sequence of experiments and so considerable prior knowledge is often available from earlier stages. A Bayesian A-optimality criterion is proposed for choosing designs, when each stage in experimentation consists of a small number of runs and the objective is to optimise a response. Simple formulae for the weights are developed, some examples of the use of the design criterion are given and general recommendations are made. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the highly competitive world of modern finance, new derivatives are continually required to take advantage of changes in financial markets, and to hedge businesses against new risks. The research described in this paper aims to accelerate the development and pricing of new derivatives in two different ways. Firstly, new derivatives can be specified mathematically within a general framework, enabling new mathematical formulae to be specified rather than just new parameter settings. This Generic Pricing Engine (GPE) is expressively powerful enough to specify a wide range of stand¬ard pricing engines. Secondly, the associated price simulation using the Monte Carlo method is accelerated using GPU or multicore hardware. The parallel implementation (in OpenCL) is automatically derived from the mathematical description of the derivative. As a test, for a Basket Option Pricing Engine (BOPE) generated using the GPE, on the largest problem size, an NVidia GPU runs the generated pricing engine at 45 times the speed of a sequential, specific hand-coded implementation of the same BOPE. Thus a user can more rapidly devise, simulate and experiment with new derivatives without actual programming.