1000 resultados para Descoberta de Conhecimento em Textos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relata resultados de pesquisa aplicando a descoberta de conhecimento em texto (DCT) em conteúdos textuais, importantes fontes de informação para tomada de decisão. O objetivo central da pesquisa foi verificar a eficácia da DCT na descoberta de informações para apoio à construção de indicadores e definição de políticas públicas. O estudo de caso foi o Serviço Brasileiro de Respostas Técnicas (SBRT) e a técnica aplicada a de agrupamento de documentos a partir dos termos minerados na base de dados. Comprovou-se a aplicabilidade da DCT na extração de informações ocultas em documentos textuais para subsidiar a tomada de decisão e a construção de indicadores, informações essas que não poderiam ser visualizadas utilizando-se recursos tradicionais de recuperação da informação. Observou-se a preocupação com o meio ambiente nas demandas feitas pelos usuários do SBRT e a aplicabilidade da DCT para orientação de políticas internas à rede SBRT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tese apresenta uma abordagem baseada em conceitos para realizar descoberta de conhecimento em textos (KDT). A proposta é identificar características de alto nível em textos na forma de conceitos, para depois realizar a mineração de padrões sobre estes conceitos. Ao invés de aplicar técnicas de mineração sobre palavras ou dados estruturados extraídos de textos, a abordagem explora conceitos identificados nos textos. A idéia é analisar o conhecimento codificado em textos num nível acima das palavras, ou seja, não analisando somente os termos e expressões presentes nos textos, mas seu significado em relação aos fenômenos da realidade (pessoas, objetos, entidades, eventos e situações do mundo real). Conceitos identificam melhor o conteúdo dos textos e servem melhor que palavras para representar os fenômenos. Assim, os conceitos agem como recursos meta-lingüísticos para análise de textos e descoberta de conhecimento. Por exemplo, no caso de textos de psiquiatria, os conceitos permitiram investigar características importantes dos pacientes, tais como sintomas, sinais e comportamentos. Isto permite explorar o conhecimento disponível em textos num nível mais próximo da realidade, minimizando o problema do vocabulário e facilitando o processo de aquisição de conhecimento. O principal objetivo desta tese é demonstrar a adequação de uma abordagem baseada em conceitos para descobrir conhecimento em textos e confirmar a hipótese de que este tipo de abordagem tem vantagens sobre abordagens baseadas em palavras. Para tanto, foram definidas estratégias para identificação dos conceitos nos textos e para mineração de padrões sobre estes conceitos. Diferentes métodos foram avaliados para estes dois processos. Ferramentas automatizadas foram empregadas para aplicar a abordagem proposta em estudos de casos. Diferentes experimentos foram realizados para demonstrar que a abordagem é viável e apresenta vantagens sobre os métodos baseados em palavras. Avaliações objetivas e subjetivas foram conduzidas para confirmar que o conhecimento descoberto era de qualidade. Também foi investigada a possibilidade de se realizar descobertas proativas, quando não se tem hipóteses iniciais. Os casos estudados apontam as várias aplicações práticas desta abordagem. Pode-se concluir que a principal aplicação da abordagem é permitir análises qualitativa e quantitativa de coleções textuais. Conceitos podem ser identificados nos textos e suas distribuições e relações podem ser analisadas para um melhor entendimento do conteúdo presente nos textos e, conseqüentemente, um melhor entendimento do conhecimento do domínio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho faz avaliação de ferramentas que utilizam técnica de Descoberta de Conhecimento em Texto (agrupamento ou “clustering”). As duas ferramentas são: Eurekha e Umap. O Eurekha é baseado na hipótese de agrupamento, que afirma que documentos similares e relevantes ao mesmo assunto tendem a permanecer em um mesmo grupo. O Umap, por sua vez, é baseado na árvore do conhecimento. A mesma coleção de documentos submetida às ferramentas foi lida por um especialista humano, que agrupou textos similares, a fim de que seus resultados fossem comparados aos das ferramentas. Com isso, pretende-se responder a seguinte questão: a recuperação automática é equivalente à recuperação humana? A coleção de teste é composta por matérias do jornal Folha de São Paulo, cujo tema central é a Amazônia. Com os resultados, pretende-se verificar a validade das ferramentas, os conhecimentos obtidos sobre a região e o tratamento que o jornal dá em relação à mesma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perante a evolução constante da Internet, a sua utilização é quase obrigatória. Através da web, é possível conferir extractos bancários, fazer compras em países longínquos, pagar serviços sem sair de casa, entre muitos outros. Há inúmeras alternativas de utilização desta rede. Ao se tornar tão útil e próxima das pessoas, estas começaram também a ganhar mais conhecimentos informáticos. Na Internet, estão também publicados vários guias para intrusão ilícita em sistemas, assim como manuais para outras práticas criminosas. Este tipo de informação, aliado à crescente capacidade informática do utilizador, teve como resultado uma alteração nos paradigmas de segurança informática actual. Actualmente, em segurança informática a preocupação com o hardware é menor, sendo o principal objectivo a salvaguarda dos dados e continuidade dos serviços. Isto deve-se fundamentalmente à dependência das organizações nos seus dados digitais e, cada vez mais, dos serviços que disponibilizam online. Dada a mudança dos perigos e do que se pretende proteger, também os mecanismos de segurança devem ser alterados. Torna-se necessário conhecer o atacante, podendo prever o que o motiva e o que pretende atacar. Neste contexto, propôs-se a implementação de sistemas de registo de tentativas de acesso ilícitas em cinco instituições de ensino superior e posterior análise da informação recolhida com auxílio de técnicas de data mining (mineração de dados). Esta solução é pouco utilizada com este intuito em investigação, pelo que foi necessário procurar analogias com outras áreas de aplicação para recolher documentação relevante para a sua implementação. A solução resultante revelou-se eficaz, tendo levado ao desenvolvimento de uma aplicação de fusão de logs das aplicações Honeyd e Snort (responsável também pelo seu tratamento, preparação e disponibilização num ficheiro Comma Separated Values (CSV), acrescentando conhecimento sobre o que se pode obter estatisticamente e revelando características úteis e previamente desconhecidas dos atacantes. Este conhecimento pode ser utilizado por um administrador de sistemas para melhorar o desempenho dos seus mecanismos de segurança, tais como firewalls e Intrusion Detection Systems (IDS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atualmente, são geradas enormes quantidades de dados que, na maior parte das vezes, não são devidamente analisados. Como tal, existe um fosso cada vez mais significativo entre os dados existentes e a quantidade de dados que é realmente analisada. Esta situação verifica-se com grande frequência na área da saúde. De forma a combater este problema foram criadas técnicas que permitem efetuar uma análise de grandes massas de dados, retirando padrões e conhecimento intrínseco dos dados. A área da saúde é um exemplo de uma área que cria enormes quantidades de dados diariamente, mas que na maior parte das vezes não é retirado conhecimento proveitoso dos mesmos. Este novo conhecimento poderia ajudar os profissionais de saúde a obter resposta para vários problemas. Esta dissertação pretende apresentar todo o processo de descoberta de conhecimento: análise dos dados, preparação dos dados, escolha dos atributos e dos algoritmos, aplicação de técnicas de mineração de dados (classificação, segmentação e regras de associação), escolha dos algoritmos (C5.0, CHAID, Kohonen, TwoSteps, K-means, Apriori) e avaliação dos modelos criados. O projeto baseia-se na metodologia CRISP-DM e foi desenvolvido com a ferramenta Clementine 12.0. O principal intuito deste projeto é retirar padrões e perfis de dadores que possam vir a contrair determinadas doenças (anemia, doenças renais, hepatite, entre outras) ou quais as doenças ou valores anormais de componentes sanguíneos que podem ser comuns entre os dadores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Descoberta de Conhecimento em Banco de Dados (DCBD) é uma nova área de pesquisa que envolve o processo de extração de conhecimento útil implícito em grandes bases de dados. Existem várias metodologias para a realização de um processo de DCBD cuja essência consiste basicamente nas fases de entendimento do domínio do problema, pré-processamento, mineração de dados e pós-processamento. Na literatura sobre o assunto existem muitos trabalhos a respeito de mineração de dados, porém pouco se encontra sobre o processo de pré-processamento. Assim, o objetivo deste trabalho consiste no estudo do pré-processamento, já que é a fase que consome a maior parte do tempo e esforço de todo o processo de DCBD pois envolve operações de entendimento, seleção, limpeza e transformação de dados. Muitas vezes, essas operações precisam ser repetidas de modo a aprimorar a qualidade dos dados e, conseqüentemente, melhorar também a acurácia e eficiência do processo de mineração. A estrutura do trabalho abrange cinco capítulos. Inicialmente, apresenta-se a introdução e motivação para trabalho, juntamente com os objetivos e a metodologia utilizada. No segundo capítulo são abordadas metodologias para o processo de DCBD destacando-se CRISP-DM e a proposta por Fayyad, Piatetsky-Shapiro e Smyth. No terceiro capítulo são apresentadas as sub-fases da fase de pré-processamento contemplando-se entendimento, seleção, limpeza e transformação de dados, bem como os principais métodos e técnicas relacionados às mesmas. Já no quarto capítulo são descritos os experimentos realizados sobre uma base de dados real. Finalmente, no quinto capítulo são apresentadas as considerações finais sobre pré-processamento no processo de DCBD, apontando as dificuldades encontradas na prática, contribuições do presente trabalho e pretensões da continuidade do mesmo. Considera-se como principais contribuições deste trabalho a apresentação de métodos e técnicas de pré-processamento existentes, a comprovação da importância da interatividade com o especialista do domínio ao longo de todo o processo de DCBD, mas principalmente nas tomadas de decisões da fase de pré-processamento, bem como as sugestões de como realizar um pré-processamento sobre uma base de dados real.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As árvores de decisão são um meio eficiente para produzir classificadores a partir de bases de dados, sendo largamente utilizadas devido à sua eficiência em relação ao tempo de processamento e por fornecer um meio intuitivo de analisar os resultados obtidos, apresentando uma forma de representação simbólica simples e normalmente compreensível, o que facilita a análise do problema em questão. Este trabalho tem, por finalidade, apresentar um estudo sobre o processo de descoberta de conhecimento em um banco de dados relacionado à área da saúde, contemplando todas as etapas do processo, com destaque à de mineração de dados, dentro da qual são aplicados classificadores baseados em árvores de decisão. Neste estudo, o conhecimento é obtido mediante a construção de árvores de decisão a partir de dados relacionados a um problema real: o controle e a análise das Autorizações de Internações Hospitalares (AIHs) emitidas pelos hospitais da cidade de Pelotas, conveniados ao Sistema Único de Saúde (SUS). Buscou-se encontrar conhecimentos que auxiliassem a Secretaria Municipal da Saúde de Pelotas (SMSP) na análise das AIHs, realizada manualmente, detectando situações que fogem aos padrões permitidos pelo SUS. Finalmente, os conhecimentos obtidos são avaliados e validados, possibilitando verificar a aplicabilidade das árvores no domínio em questão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sistemas de informações geográficas (SIG) permitem a manipulação de dados espaço-temporais, sendo bastante utilizados como ferramentas de apoio à tomada de decisão. Um SIG é formado por vários módulos, dentre os quais o banco de dados geográficos (BDG), o qual é responsável pelo armazenamento dos dados. Apesar de representar, comprovadamente, uma fase importante no projeto do SIG, a modelagem conceitual do BDG não tem recebido a devida atenção. Esse cenário deve-se principalmente ao fato de que os profissionais responsáveis pelo projeto e implementação do SIG, em geral, não possuem experiência no uso de metodologias de desenvolvimento de sistemas de informação. O alto custo de aquisição dos dados geográficos também contribui para que menor atenção seja dispensada à etapa de modelagem conceitual do BDG. A utilização de padrões de análise tem sido proposta tanto para auxiliar no projeto conceitual de BDG quanto para permitir que profissionais com pouca experiência nessa atividade construam seus próprios esquemas. Padrões de análise são utilizados para documentar as fases de análise de requisitos e modelagem conceitual do banco de dados, representando qualquer parte de uma especificação de requisitos que tem sua origem em um projeto e pode ser reutilizada em outro(s). Todavia, a popularização e o uso de padrões de análise para BDG têm sido prejudicados principalmente devido à dificuldade de disponibilizar tais construções aos projetistas em geral. O processo de identificação de padrões (mineração de padrões) não é uma tarefa simples e tem sido realizada exclusivamente com base na experiência de especialistas humanos, tornando o processo lento e subjetivo. A subjetividade prejudica a popularização e a aplicação de padrões, pois possibilita que tais construções sejam questionadas por especialistas com diferentes experiências de projeto. Dessa forma, a identificação ou o desenvolvimento de técnicas capazes de capturar a experiência de especialistas de forma menos subjetiva é um passo importante para o uso de padrões. Com esse objetivo, este trabalho propõe a aplicação do processo de descoberta de conhecimento em banco de dados (DCBD) para inferir candidatos a padrão de análise para o projeto de BDG. Para tanto, esquemas conceituais de BDG são usados como base de conhecimento. DCBD é o processo não trivial de descoberta de conhecimento útil a partir de uma grande quantidade de dados. Durante o desenvolvimento da pesquisa ficou claro que a aplicação do processo de DCBD pode melhorar o processo de mineração de padrões, pois possibilita a análise de um maior número de esquemas em relação ao que é realizado atualmente. Essa característica viabiliza que sejam considerados esquemas construídos por diferentes especialistas, diminuindo a subjetividade dos padrões identificados. O processo de DCBD é composto de várias fases. Tais fases, assim como atividades específicas do problema de identificar padrões de análise, são discutidas neste trabalho.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em virtude de uma elevada expectativa de vida mundial, faz-se crescente a probabilidade de ocorrer acidentes naturais e traumas físicos no cotidiano, o que ocasiona um aumento na demanda por reabilitação. A terapia física, sob o paradigma da reabilitação robótica com serious games, oferece maior motivação e engajamento do paciente ao tratamento, cujo emprego foi recomendado pela American Heart Association (AHA), apontando a mais alta avaliação (Level A) para pacientes internados e ambulatoriais. No entanto, o potencial de análise dos dados coletados pelos dispositivos robóticos envolvidos é pouco explorado, deixando de extrair informações que podem ser de grande valia para os tratamentos. O foco deste trabalho consiste na aplicação de técnicas para descoberta de conhecimento, classificando o desempenho de pacientes diagnosticados com hemiparesia crônica. Os pacientes foram inseridos em um ambiente de reabilitação robótica, fazendo uso do InMotion ARM, um dispositivo robótico para reabilitação de membros superiores e coleta dos dados de desempenho. Foi aplicado sobre os dados um roteiro para descoberta de conhecimento em bases de dados, desempenhando pré-processamento, transformação (extração de características) e então a mineração de dados a partir de algoritmos de aprendizado de máquina. A estratégia do presente trabalho culminou em uma classificação de padrões com a capacidade de distinguir lados hemiparéticos sob uma precisão de 94%, havendo oito atributos alimentando a entrada do mecanismo obtido. Interpretando esta coleção de atributos, foi observado que dados de força são mais significativos, os quais abrangem metade da composição de uma amostra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação