951 resultados para Depth, logging
Resumo:
Multiple copies of Cretaceous black shales extending from the early Cenomanian to the end of the Santonian were recovered at five sites on Demerara Rise during Leg 207 of the Ocean Drilling Program. These sediments are primarily composed of laminated organic-rich claystones interbedded with coarser, lightly laminated foraminferal-bearing packstones and wackestones. The black shales represent the local expression of widespread organic-rich sedimentation in the Atlantic during the mid-Cretaceous. However, incomplete recovery prevented construction of continuous composite sections, resulting in uncertainties concerning the correct stratigraphic placement of individual cores. By combining high-resolution measurements of bulk density collected shipboard on the multisensor track with continuous downhole measurements of formation resistivity using the Formation MicroScanner, an equivalent logging depth scale was constructed for black shales recovered from Sites 1258, 1260, and 1261. The integrated depths approach centimeter-scale resolution and are supported by comparisons of coarser resolution natural gamma ray emissions collected on cores and through downhole logging operations. The new depths highlight the extent of both intra- and intercore gaps and provide an opportunity to further constrain temporal and spatial paleoceanographic changes captured in proxy records from these sediments.
Resumo:
Detection of climate response to orbital forcing during Cenozoic long-term global cooling is a key to understanding the behavior of Earth's icehouse climate. Sedimentary rhythm, which is a rhythmic or cyclic variation in the sequence of sediments and sedimentary rocks, is useful for quantitative reconstruction of Earth's evolution during geological time. In this study, we attempt to (1) identify sources of natural gamma ray (NGR) emissions of core recovered during Ocean Drilling Program (ODP) Leg 186 by analyses of physical properties, major element concentrations, diatom abundances, and total organic carbon contents, (2) integrate whole-core NGR intensity of recovered core with wireline logging NGR measurements in order to construct a continuous sedimentary sequence, and (3) discuss changes in the NGR signal in the time domain. This attempt gives us preliminary information to discuss climate stability in relation to orbital forcing thorough geologic time. NGR values are obtained mainly by indirectly measuring the amount of terrigenous minerals including potassium and related elements in the sediments. NGR intensity is also affected by high porosity, which in these sediments was related to the amount of diatom valves. NGR signals might be a proxy of the intensity of the East Asian monsoon off Sanriku. A continuous sedimentary record was constructed by integration of the whole-core NGR intensity measured in sediments obtained from the drilled holes with that measured directly in the borehole by wireline logging, then using a stratigraphic age model to convert to a time series covering 1.3-9.7 Ma with a short break at ~5 Ma. High sedimentation rate (H) stages were identified in the sequence, related to intervals of low-amplitude precession and eccentricity variations. The transition of the dominant periodicities through the four H stages may correlate to major shifts in the climate system, including the onset of major Northern Hemisphere glaciation, the initial stage of the East Asian monsoon intensification, and the onset of the East Asian monsoon with uplift of the Himalayas and the Tibetan Plateau.
Resumo:
During Ocean Drilling Program Leg 199 a high-resolution (~1-2 cm/k.y.) biogenic sediment record from the late Paleocene to the early Miocene was recovered, containing an uninterrupted set of geomagnetic chrons as well as a detailed record of calcareous and siliceous biostratigraphic datum events. Shipboard lithologic proxy measurements and shore-based determinations of CaCO3 revealed regular cycles that can be attributed to climatic forcing. Discovering drill sites with well defined magneto- and biostratigraphic records that also show clear lithologic cycles is rare and valuable and creates the opportunity to develop a detailed stratigraphic intersite correlation, providing the basis to study paleoceanographic processes and mass accumulation rates at high resolution. Here we present extensive postcruise work that extends the shipboard composite depth stratigraphy by providing a high-resolution revised meters composite depth (rmcd) scale to compensate for depth distortion within individual cores. The depth-aligned data were then used to generate stacked records of lithologic proxy measurements. Making use of the increased signal-to-noise ratio in the stacked records, we then proceeded to generate a detailed site-to-site correlation between Sites 1218 and 1219 in order to decrease the depth uncertainty for magneto- and biostratigraphic datums. Stacked lithologic proxy records in combination with discrete measurements of CaCO3 were then exploited to calculate high-resolution carbonate concentration curves by regression of the multisensor track data with discrete measurements. By matching correlative features between the cores and wireline logging data, we also rescaled our core rmcd back to in situ depths. Our study identifies lithology-dependent core expansion due to unloading as the mechanism of varying stratigraphic thicknesses between cores.
Resumo:
Abyssal mud waves (or fine-grained sediment waves) are often cited as evidence for deep current activity because subbottom profiles show that the wave form has migrated with time. The migration history of a fine-grained sediment wave on the Blake-Bahama Outer Ridge (ODP Site 1062) has been studied through the analysis of multiple ODP holes spaced across the wave. Additional information about wave migration patterns comes from 3.5-kHz records and watergun seismic profiles. These data suggest that wave migration has varied during the last not, vert, similar ~10 Myr, although the only sediments sampled are younger than 4.8 Ma. Seismic profiles suggest wave migration was initiated about 8-10 Ma, and wave migration was pronounced from about 5 Ma to about 1 Ma (with an episode of wave reorganization about 4.5 Ma). Analysis of ODP cores suggests that migration rates have been somewhat lower and more variable during the last 1 Myr. Intervals of no wave migration are observed for several time intervals and appear to characterize deglaciations, especially during the last 500 kyr. Comparisons between seismic profiles and the core record show that most of the seismic horizons correlate closely with time horizons, and thus that the seismic profiles give a reasonable representation of sediment wave migration. Models suggest that wave migration is more pronounced during periods of higher bottom current flow and less pronounced during periods of lower current flow. Thus the migration record is consistent with generally higher bottom flow speeds at this site prior to 1 Ma and lower bottom flow speeds after 1 Ma. The Mid-Pleistocene Transition from a dominant climatic periodicity of 40 kyr to a dominant climatic periodicity of 100 kyr starts at about this time, suggesting an overall reduction in bottom flow speed at this site coincident with changing climate patterns. These changes in flow speed could be related to changes in the depth of the Western Boundary Undercurrent as well as to changes in the speed of thermohaline circulation.
Resumo:
During Leg 127, the formation microscanner (FMS) logging tool was used as part of an Ocean Drilling Program (ODP) logging program for only the second time in the history of the program. Resistivity images, also known as FMS logs, were obtained at Sites 794 and 797 that covered nearly the complete Yamato Basin sedimentary sequence to a depth below 500 mbsf. The FMS images from these two sites at the northeastern and southwestern corners of the Yamato Basin thus were amenable to comparison. A strong visual correlation was noticed between the FMS logs taken in Holes 794B and 797C in an upper Miocene interval (350-384 mbsf), although the two sites are approximately 360 km apart. In this interval, the FMS logs showed a series of more resistive thin beds (10-200 cm) alternating with relatively lower resistivity layers: a pattern that was manifested by alternating dark (low resistivity) and light (high resistivity) banding in the FMS images. We attribute this layering to interbedding of chert and porcellanite layers, a common lithologic sequence throughout Japan (Tada and Iijima, 1983, doi:10.1306/212F82E7-2B24-11D7-8648000102C1865D). Spatial frequency analysis of this interval of dominant dark-light banding showed spatial cycles of period of 1.1 to 1.3 and 0.6 m. This pronounced layering and the correlation between the two sites terminate at 384 mbsf, coincident with the opal-CT to quartz transition at Site 794. We think the correlation in the FMS logs might well extend earlier in the middle Miocene, but the opal-CT to quartz transition obscures this layering below 384 mbsf. Although 34 m is only a small part of the core recovered at these two sites, it is significant because it represents an area of extremely poor core recovery and an interval for which a near-depositional hiatus was postulated for Site 797, but not for Site 794.
Resumo:
Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.
Resumo:
During Ocean Drilling Program (ODP) Leg 178, eight holes were drilled at three sites (1095, 1096, and 1101) on the continental rise along the western Antarctic Peninsula. The rise sediments proved to be good paleomagnetic recorders and provided continuous magnetostratigraphic records at all three sites. Biosiliceous microfossils, particularly diatoms and radiolarians, were present in the upper Miocene through lower Pliocene sections. In the upper Pliocene to Pleistocene sections, biosiliceous microfossils were rare but calcareous nannofossils and foraminifers were present. This paper summarizes the biostratigraphy and magnetostratigraphy of Leg 178 continental rise sites and is the first attempt at direct calibration of Antarctic biostratigraphic events to the geomagnetic polarity timescale in the Pacific sector of the Southern Ocean.