4 resultados para Deplacement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce Texte Constitue un Survol des Differentes Approches Destines a Mesurer le Progres Technique. Nous Utilisons une Notation Uniforme Tout au Long des Demonstrations Mathematiques et Nous Faisons Ressortir les Hypotheses Qui Rendent L'application des Methodes Proposees Envisageable et Qui En Limitent la Portee. les Diverses Approches Sont Regroupees D'apres une Classification Suggeree Par Diewert (1981) Selon Laquelle Deux Groupes Sont a Distinguer. le Premier Groupe Contient Toutes les Methodes Definissant le Progres Technique Comme le Taux de Croissance D'un Indice des Outputs Divise Par un Indice des Inputs (Approche de Divisia). L'autre Groupe Inclut Toutes les Methodes Definissant le Progres Technique Comme Etant le Deplacement D'une Fonction Representant la Technologie (Production, Cout, Distance). Ce Second Groupe Est Subdivise Entre L'approche Econometrique,La Theorie des Nombres Indices et L 'Approche Non Parametrique. une Liste des Pricipaux Economistes a Qui L'on Doit les Diverses Approches Est Fournie. Cependant Ce Survol Est Suffisamment Detaille Pour Etre Lu Sans Se Referer aux Articles Originaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-publication drafts are reproduced with permission and copyright © 2013 of the Journal of Orthopaedic Trauma [Mutch J, Rouleau DM, Laflamme GY, Hagemeister N. Accurate Measurement of Greater Tuberosity Displacement without Computed Tomography: Validation of a method on Plain Radiography to guide Surgical Treatment. J Orthop Trauma. 2013 Nov 21: Epub ahead of print.] and copyright © 2014 of the British Editorial Society of Bone and Joint Surgery [Mutch JAJ, Laflamme GY, Hagemeister N, Cikes A, Rouleau DM. A new morphologic classification for greater tuberosity fractures of the proximal humerus: validation and clinical Implications. Bone Joint J 2014;96-B:In press.]