1000 resultados para Dependent Magnetoresistance Oscillations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent transport. Consequently, the existence of a three-dimensional Fermi surface is not necessary to explain the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction is varied. [S0031-9007(98)07660-1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report in detail oscillatory magnetoresistance in double quantum wells under microwave irradiation. The experimental investigation contains measurements of frequency, power and temperature dependence. In theory, the observed interference oscillations are explained in terms of the influence of subband coupling on the frequency-dependent photoinduced part of the electron distribution function. Thus, the magnetoresistance shows the interference of magneto-intersubband and conventional microwave induced resistance oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals. [S0163-1829(99)02236-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interference of magneto-intersubband oscillations and microwave-induced resistance oscillations is studied in high-density triple quantum wells. We give an introduction into magnetotransport in trilayer systems and focus on photoresistance measurements. The power and frequency dependence of the observed magnetoresistance oscillations can be described by the inelastic mechanism of photoresistance, generalized to the three-subband case. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interference of microwave-induced resistance oscillations and magneto-intersubband oscillations in double quantum wells exposed to a continuous microwave irradiation is under study. By comparing experimental and theoretical magnetoresistance traces at different temperatures, we confirm that the inelastic mechanism of photoresistance explains our observations up to T similar or equal to 4 K. For higher temperatures, our results suggest a deviation of the inelastic scattering time tau(in) from the predicted T(-2) dependence. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequency dependence of the interlayer conductivity of a layered Fermi liquid in a magnetic field that is tilted away from the normal to the layers is considered. For both quasi-one- and quasi-two-dimensional systems resonances occur when the frequency is a harmonic of the frequency at which the magnetic field causes the electrons to oscillate on the Fermi surface within the layers. The intensity of the different harmonic resonances varies significantly with the direction of the field. The resonances occur for both coherent and weakly incoherent interlayer transport and so their observation does not imply the existence of a three-dimensional Fermi surface. [S0163-1829(99)51240-X].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*similar or equal to 4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on the observation of microwave-induced resistance oscillations associated with the fractional ratio n/m of the microwave irradiation frequency to the cyclotron frequency for m up to 8 in a two-dimensional electron system with high electron density. The features are quenched at high microwave frequencies independent of the fractional order m. We analyze temperature, power, and frequency dependencies of the magnetoresistance oscillations and discuss them in connection with existing theories.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synchronized network responses in thalamus depend on phasic inhibition originating in the thalamic reticular nucleus (nRt) and are mediated by the neurotransmitter γ-aminobutyric acid (GABA). A suggested role for intra-nRt connectivity in inhibitory phasing remains controversial. Recently, functional GABA type B (GABAB) receptors were demonstrated on nRt cells, and the slow time course of the GABAB synaptic response seems ideally suited to deinactivate low-threshold calcium channels. This promotes burst firing, a characteristic feature of synchronized responses. Here we investigate GABAB-mediated rebound burst firing in thalamic cells. Whole-cell current-clamp recordings were obtained from nRt cells and somatosensory thalamocortical relay cells in rat brain slices. Synthetic GABAB inhibitory postsynaptic potentials, generated by a hybrid computer–neuron synapse (dynamic clamp), triggered rebound low-threshold calcium spikes in both cell types when peak inhibitory postsynaptic potential hyperpolarization was greater than −92 mV. The threshold inhibitory postsynaptic potential conductance for rebound burst generation was comparable in nRt (7 nS) and thalamocortical (5 nS) cells. However, burst onset in nRt (1 s) was considerably delayed compared with thalamocortical (0.6 s) cells. Thus, GABAB inhibitory postsynaptic potentials can elicit low-threshold calcium spikes in both relay and nRt neurons, but the resultant oscillation frequency would be faster for thalamocortical–nRt networks (3 Hz) than for nRt–nRt networks (1–2 Hz). We conclude, therefore, that fast (>2 Hz) GABAB-dependent thalamic oscillations are maintained primarily by reciprocal connections between excitatory and inhibitory cells. These findings further indicate that when oscillatory neural networks contain both recurrent and reciprocal inhibition, then distinct population frequencies may result when one or the other type of inhibition is favored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.