980 resultados para Dental soldering
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
PURPOSE. Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS. Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS. The results on the tightened side were significantly lower in Group C (6.43 +/- 3.24 mu m) when compared to Groups A (16.50 +/- 7.55 mu m) and B (16.27 +/- 1.71 mu m) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66 +/- 14.30 mu m; Group B, 39.4.8 +/- 12.03 mu m; Group C, 23.13 +/- 8.24 mu m) (P<.05). CONCLUSION. Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. [J Adv Prosthodont 2012;4:89-92]
Resumo:
Introduction: Passive fit has been considered an important requirement for the longevity of implant-supported prostheses. Among the different steps of prostheses construction, casting is a feature that can influence the precision of fit and consequently the uniformity of possible deformation among abutments upon the framework connection. Purpose: This study aimed at evaluating the deformation of abutments after the connection of frameworks either cast in one piece or after soldering. Materials and Methods: A master model was used to simulate a human mandible with 5 implants. Ten frameworks were fabricated on cast models and divided into 2 groups. Strain gauges were attached to the mesial and distal sides of the abutments to capture their deformation after the framework’s screw retentions were tightened to the abutments. Results: The mean values of deformation were submitted to a 3-way analysis of variance that revealed significant differences between procedures and the abutment side. The results showed that none of the frameworks presented a complete passive fit. Conclusion: The soldering procedure led to a better although uneven distribution of compression strains on the abutments.
Resumo:
This paper demonstrates that in order to understand and design for interactions in complex work environments, a variety of representational artefacts must be developed and employed. A study was undertaken to explore the design of better interaction technologies to support patient record keeping in a dental surgery. The domain chosen is a challenging real context that exhibits problems that could potentially be solved by ubiquitous computing and multi-modal interaction technologies. Both transient and durable representations were used to develop design understandings. We describe the representations, the kinds of insights developed from the representations and the way that the multiple representations interact and carry forward in the design process.
Resumo:
This paper reflects upon our attempts to bring a participatory design approach to design research into interfaces that better support dental practice. The project brought together design researchers, general and specialist dental practitioners, the CEO of a dental software company and, to a limited extent, dental patients. We explored the potential for deployment of speech and gesture technologies in the challenging and authentic context of dental practices. The paper describes the various motivations behind the project, the negotiation of access and the development of the participant relationships as seen from the researchers' perspectives. Conducting participatory design sessions with busy professionals demands preparation, improvisation, and clarity of purpose. The paper describes how we identified what went well and when to shift tactics. The contribution of the paper is in its description of what we learned in bringing participatory design principles to a project that spanned technical research interests, commercial objectives and placing demands upon the time of skilled professionals.
Resumo:
This paper describes a series of design games, specifically aimed at exploring shifts in human agency in order to inform the design of context-aware applications. The games focused on understanding information handling issues in dental practice with participants from a university dental school playing an active role in the activities. Participatory design activities help participants to reveal potential implicit technical resources that can be presented explicitly in technologies in order to assist humans in managing their interactions with and amidst technical systems gracefully.
Resumo:
Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration
Resumo:
Objective: In an effort to examine the decreasing oral health trend of Australian dental patients, the Health Belief Model (HBM) was utilised to understand the beliefs underlying brushing and flossing self-care. The HBM states that perception of severity and susceptibility to inaction and an estimate of the barriers and benefits of behavioural performance influences people’s health behaviours. Self-efficacy, confidence in one’s ability to perform oral self-care, was also examined. Methods: In dental waiting rooms, a community sample (N = 92) of dental patients completed a questionnaire assessing HBM variables and self-efficacy, as well as their performance of the oral hygiene behaviours of brushing and flossing. Results: Partial support only was found for the HBM with barriers emerging as the sole HBM factor influencing brushing and flossing behaviours. Self-efficacy significantly predicted both oral hygiene behaviours also. Conclusion: Support was found for the control factors, specifically a consideration of barriers and self-efficacy, in the context of understanding dental patients’ oral hygiene decisions. Practice implications: Dental professionals should encourage patients’ self-confidence to brush and floss at recommended levels and discuss strategies that combat barriers to performance, rather than emphasising the risks of inaction or the benefits of oral self-care.
Resumo:
This article features the Healthy Smile Dental Clinic located at Shop 43, Underwood Market Place, 3215 Logan Road, Underwood, Queensland, which was designed by OEWG Architects. The environment of the clinic was based on the concept of human relationship and care.
Resumo:
Dentists have the privilege of possessing, administering and prescribing drugs, including highly addictive medications, to their patients. But because drugs are often vulnerable to being abused by all members of society, including dentists and their patients, and because drugs can be dangerous, they are tightly regulated in Canada by the federal and provincial/territorial governments. Regulatory and professional dental bodies also provide guidance for their members about how to best administer and prescribe drugs. This chapter outlines the regulation by federal and provincial/territorial governments in this area, examines the professional practice requirements set out by regulatory/professional bodies and the issue of drug abuse by dental professional and patients. It is important to note from the outset that governmental and professional regulations, policies and practices differ from province to province and territory to territory. This chapter aims to alert dentists to possible legal and professional issues surrounding the possession, administration and prescription of drugs. For detailed specific information about regulation, policies, ethical standards and professional practice standards in Canada or their province/ territory, dentists should contact their insurer or professional association.
Resumo:
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.
Resumo:
Dental pulp cells (DPCs) have shown promising potential in dental tissue repair and regeneration. However, during in vitro culture, these cells undergo replicative senescence and result in significant alteration in cell proliferation and differentiation. Recently, the transcription factors of Oct-4, Sox2, c-Myc, and Klf4 have been reported to play a regulatory role in the stem cell self-renewal process, namely cell reprogramming. Therefore, it is interesting to know whether the replicative senescence during the culture of dental pulp cells is related to the diminishing of the expression of these transcription factors. In this study, we investigated the expression of the reprogramming markers Oct-4, Sox2, and c-Myc in the in vitro explant cultured dental pulp tissues and explant cultured dental pulp cells (DPCs) at various passages by immunofluorescence staining and real-time polymerase chain reaction analysis. Our results demonstrated that Oct-4, Sox2, and c-Myc translocated from nucleus in the first 2 passages to cytoplasm after the third passage in explant cultured DPCs. The mRNA expression of Oct-4, Sox2, and c-Myc elevated significantly over the first 2 passages, peaked at second passage (P < .05), and then decreased along the number of passages afterwards (P < .05). For the first time we demonstrated that the expression of reprogramming markers Oct-4, Sox2, and c-Myc was detectable in the early passaged DPCs, and the sequential loss of these markers in the nucleus during DPC cultures might be related to the cell fate of dental pulp derived cells during the long-term in vitro cultivation under current culture conditions.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.