1000 resultados para Dental enamel, erosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that fluoride products are able to reduce erosive tooth wear. Thus, the purpose of this in vitro study was to evaluate the effect of dentifrices with different fluoride concentrations as well as of a low-fluoridated dentifrice supplemented with trimetaphosphate (TMP) on enamel erosion and abrasion. One hundred twenty bovine enamel blocks were assigned to the following experimental dentifrices: placebo, 1,100 mu g F/g, 500 mu g F/g plus 3% TMP and 5,000 mu g F/g. The groups of enamel blocks were additionally subdivided into conditions of erosion (ERO) and of erosion plus abrasion (ERO + ABR). For 7 days, the blocks were subjected to erosive challenges (immersion in Sprite (R) 4 times a day for 5 min each time) followed by a remineralizing period (immersion in artificial saliva between erosive challenges for 2 h). After each erosive challenge, the blocks were exposed to slurries of the dentifrices (10 ml/sample for 15 s). Sixty of the blocks were additionally abraded by brushing using an electric toothbrush (15 s). The alterations of the enamel were quantified using the Knoop hardness test and profilometry (measurements in micrometers). The data were analyzed using a 2-way ANOVA test followed by a Bonferroni correction (p < 0.05). In in vitro conditions, the 5,000 mu g F/g and 500 mu g F/g plus 3% TMP dentifrices had a greater protective effect when compared with the 1,100 mu g F/g dentifrice, under both ERO and ERO + ABR conditions. The results suggest that dentifrices alone are not capable of completely inhibiting tooth wear. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of the present in situ study was to evaluate the influence of dental plaque on human enamel erosion. Materials and Methods: Thirteen volunteers wore acrylic palatal devices with four enamel specimens that were prepared from freshly extracted impacted human third permanent molars (4 x 4 mm), randomly selected and distributed into two vertical rows, corresponding to the following groups: GI, erosion of dental plaque-free samples, and GII, erosion of dental plaque-covered samples. For the formation of dental plaque, the specimens were placed 1 mm below the level of the appliance and covered with a plastic mesh to allow the accumulation of dental plaque. The palatal device was continuously worn by the volunteers for 14 consecutive days and then immersed in a soft drink (Coca-Cola (R), 150 ml) for 5 min, three times a day. Half of the surfaces of specimens were coated with nail varnish for profilometry tests. The study variables included the depth of enamel surface wear (profilometer, vertical ranges in pm) and the percentage of superficial microhardness change (%SMHC). Data were analysed using the t test (P < 0.05). Results: The %SMHC and depth of enamel surface wear were significantly higher for GI (-87.82% +/- 3.66 and 4.70 mu m +/- 1.65) than for GII (-13.79% +/- 4.22 and 0.14 mu m +/- 0.03). Conclusions: It was concluded that the dental plaque formed in situ was able to protect the enamel surface against erosion by a cola soft drink, thus reducing the depth of enamel surface wear and the %SMHC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to assess the salivary residual effect of fluoride dentifrice on human enamel subjected to an erosive challenge. This crossover in situ study was performed in two phases (A and B), involving ten volunteers. In each phase, they wore acrylic palatal appliances, each containing 3 human enamel blocks, during 7 days. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 minutes, 4 times a day. Dentifrice was used to brush the volunteers’ teeth, 4 times a day, during 1 minute, before the appliance was replaced into the mouth. In phases A and B the dentifrices used had the same formulation, except for the absence (PD) or presence (FD) of fluoride, respectively. Enamel alterations were determined using profilometry, microhardness (%SMHC), acid- and alkali-soluble F analysis. The data were tested using ANOVA (p < 0.05). The concentrations (mean ± SD) of alkali- and acid-soluble F (µgF/cm²) were, respectively, PD: 1.27ª ± 0.70/2.24A ± 0.36 and FD: 1.49ª ± 0.44/2.24A ± 0.67 (p > 0.05). The mean wear values (± SD, µm) were PD: 3.63ª ± 1.54 and FD: 3.54ª ± 0.90 (p > 0.05). The mean %SMHC values (± SD) were PD: 89.63ª ± 4.73 and FD: 87.28ª ± 4.01 (p > 0.05). Thus, we concluded that the residual fluoride from the fluoride-containing dentifrice did not protect enamel against erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Previous investigations have demonstrated improved enamel demineralization resistance after laser irradiation. Due to the possibility of a synergistic effect between laser and fluoride, this study investigated the effect of fluoridated agents and Nd:YAG irradiation separately and in combination on enamel resistance to erosion. Methods: One hundred bovine enamel blocks were randomly divided into 10 groups: G1, untreated (control); G2, acidic phosphate fluoride (APF) (1.23% F) for 4 min; G3, fluoride varnish for 6 h (NaF, 2.26%); G4, 0.5 W Nd: YAG laser (250 mm pulse width, 10 Hz, 35 J/cm(2), with uniform velocity for 30 sec in each application); G5, 0.75 W Nd:YAG laser (52.5 J/cm(2)); G6, 1.0 W Nd:YAG laser (70 J/cm(2)); G7, APF + 0.75 W Nd:YAG laser; G8, 0.75 W Nd:YAG laser + APF; G9, fluoride varnish + 0.75 W Nd:YAG laser; and G10, 0.75 W Nd:YAG laser + fluoride varnish. During 10 d the erosive cycle was conducted by immersion of the blocks in Sprite light for 1 min, followed by immersion in artificial saliva for 59 min. This procedure was consecutively repeated four times per day. In each day, during the remaining 20 h, the blocks were maintained in artificial saliva. The wear was evaluated by profilometry (days 5 and 10). Data were tested by two-way ANOVA and Bonferroni's tests (p < 0.05). Results: The mean wear at days 5 and 10 was, respectively: G1, 1.83 and 2.67 mu m; G2, 1.04 and 2.60 mu m; G3, 1.03 and 2.48 mu m; G4, 1.13 and 2.47 mu m; G5, 1.07 and 2.44 mu m; G6, 1.0 and 2.35 mu m; G7, 0.75 and 2.27 mu m; G8, 0.80 and 2.12 mu m; G9, 0.76 and 2.47 mu m; and G10, 1.09 and 2.46 mu m. At day 5, all the experimental groups presented significant lesser wear when compared to control group. However, at 10 d, only G7 and G8 were still different from control. Conclusions: The association between APF application and laser irradiation seems to be an alternative preventive measure against dental erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 degrees C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37 degrees C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel. Microsc. Res. Tech. 74:512-516, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated in vitro commercial desensitizing toothpastes with respect to the prevention of erosion and explored the effect of their agents alone or in combination with fluoride. Bovine enamel blocks were randomly allocated to five groups of 20 and exposed to: Sensodyne ProNamel (1,425 ppm F as NaF, 5% KNO(3)), Sensodyne Original (no fluoride, 10% SrCl(2)), Colgate Sensitive (1,450 ppm F as sodium monofluorophosphate, 5% K citrate), Crest (fluoride-only toothpaste, 1,100 ppm F as NaF) and water (negative control). A second experiment was conducted with experimental dentifrices containing fluoride (NaF, 1,100 ppm F), 10% SrCl(2), 5% KNO(3) or 5% K citrate alone or the latter three combined with F. The samples were submitted to four cycles, alternating demineralization (cola, 10 min) and remineralization (artificial saliva, 1 h). Before and between cyclic de- and remineralization, blocks were treated with slurries of the respective toothpastes or water (1 min). Erosive tissue loss was analyzed by profilometry. Data were analyzed by Kruskal-Wallis and Dunn`s tests (p < 0.05). The mean erosion depth (+/- SE, mu m) was significantly less for Colgate Sensitive (0.04 +/- 0.00), Sensodyne Original (0.06 +/- 0.01) and Crest (0.07 +/- 0.01) than for Sensodyne ProNamel (2.36 +/- 0.25) or water (2.92 +/- 0.24), which did not significantly differ from each other. Both F and the desensitizing agents alone reduced erosion, but no additive effect was found. In addition, the combination of F and KNO(3) did not reduce erosion. These in vitro results suggest that the presence of fluoride or desensitizing substances in toothpastes, alone or in combination, can reduce erosion of enamel, but this is not valid for all the formulations. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acidic soft drinks are potentially erosive for dental hard tissues. This in vitro study evaluated the effect of calcium, fluoride, iron and phosphate, supplemented alone or in combination to a commercial citric acid-based carbonated beverage on dental erosion. Ninety enamel samples (4 x 4 x 3 mm) were randomly allocated to nine groups (n = 10): G1 - pure beverage (control); G2 - with 1 mM Ca; G3 - with 0.047 mM F; G4 - with 1 mM Fe; G5 - with 1 mM P; G6 - with 1 mM Ca and 0.047 mM F; G7 - with 1 mM Ca and 1 mM P; G8 - with 1 mM Fe and 0.047 mM F; and G9 - with 1 mM Ca, 1 mM P, 0.047 mM F and 1.0 mM Fe. The samples were subjected to six pH cycles over a 24-h period. In each cycle, the samples were immersed in pure or modified beverage (1 min) and in artificial saliva (59 min). During the remaining period (18 h), the samples were maintained in artificial saliva. Enamel loss was assessed by profilometry (mm). Data were tested using ANOVA and Tukey`s tests (p < 0.05). Highest enamel losses were observed in the control group (G1) and in the groups containing Fe (G4 and G8). The groups containing Ca (G2 and G6) showed significantly less wear compared to control. In conclusion, the modification of an erosive soft drink with low concentrations of Ca with or without F may reduced its erosive potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate the preventive effect in vitro of experimental gel containing iron and/or fluoride on the erosion of bovine enamel. Methods: To standardize the blocks (n = 80), specimens (4 x 4 mm) were previously selected to measure the initial microhardness. The blocks were randomly allocated into four groups of 20 samples each: C (control, placebo gel); F (fluoride gel, 1.23% NaF); Fe (iron gel, 10 mmol/L FeSO(4)) and F + Fe (fluoride + iron gel). The gels were applied and removed after 1 minute. The blocks were then submitted to six alternating remineralization and demineralization cycles. The beverage Coca-Cola (R) (10 minutes, 30 mL) was used for demineralization, and artificial saliva (1 hour) for remineralization. The effect of erosion was measured by wear analysis (profilometry). Data were analysed by ANOVA and the Tukey test for individual comparisons (p <0.05). Results: The mean wear (+/- SD, mu m) was C: 0.94 +/- 0.22; F: 0.55 +/- 0.12; Fe: 0.49 +/- 0.11 and F + Fe: 0.55 +/- 0.13. When the experimental gels were used, there was statistically significant reduction in enamel wear in comparison with the control (p <0.001). However, the experimental gels did not differ significantly among them. Conclusions: The gels containing iron with or without fluoride are capable of interfering with the dissolution dental enamel in the presence of erosive challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate, in vitro, the effect of an experimental varnish containing iron on the dissolution of bovine enamel by carbonated beverage. Methods: Eighty specimens were randomly allocated to four groups (n = 20 per group), according to the following treatments: Fe varnish (FeV, 10 mmoL/L Fe), F varnish (FV, 2.71% F), placebo varnish (PV) and control (not treated, NT). The varnishes were applied in a thin layer and removed after 6 h. Then, the samples were submitted to six cycles, alternating re- and demineralisation (only 1 day). Demineralisation was performed with the beverage Coca-Cola (R) (10 min, 30 mL/block) and remineralisation with artificial saliva for I h. In order to determine the amount of enamel dissolved, the wear was analysed by profilometry. Data were analysed by ANOVA and Tukey`s test (p < 0.05). Results: The mean wear (+/- S.E.) was significantly lesser for the FeV (0.451 +/- 0.018 mu m) when compared to the other treatments. The FV caused significantly less wear (0.554 +/- 0.022 mu m) when compared to PV (0.991 +/- 0.039 mu m) and NT (1.014 +/- 0.033), which did not significantly differ from each other. Conclusions: The results suggest that the iron varnish can interfere with the dissolution of dental enamel in the presence of acidic beverages. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess, by a crossover 2 x 2 in situ study, the speculated protective role of a sodium bicarbonate-containing toothpaste in controlling erosive lesions. Methods: Bovine enamel slabs were sterilized, and submitted to baseline Knoop microhardness measurements. After a 3-day lead-in period, 14 volunteers wore palatal acrylic appliances containing six enamel slabs (three on each side), for 4 consecutive days. On the first day, appliances with contained specimens were placed in the oral cavity to allow salivary pellicle formation. On the subsequent days, half of the enamel slabs were immersed extraorally in a lemonade-like soft drink for 90 seconds, twice daily. On both of these occasions, the appliance was dipped in toothpaste slurry of either a sodium bicarbonate-containing toothpaste or a regular counterpart for 60 seconds. Following a 3-day washout period, a new set of enamel slabs were mounted and the volunteers started the second period using the alternate dentifrice. Results: ANOVA (alpha = 0.05) showed no statistically significant difference between enamel treated with regular and sodium bicarbonate-based dentifrices, regardless of whether specimens were eroded or not (P=0.8430). Acid-challenged specimens revealed lower microhardness values than uneroded samples. (Am J Dent 2008;21:300-302).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth`s dental enamel. Methods: Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Energy dispersive X-ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal-Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. Results: The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel-dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. Conclusions: The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. Microsc. Res. Tech. 73:572-577, 2010. (C) 2009 Wiley-Liss. Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to assess the salivary residual effect of fluoride dentifrice on human enamel subjected to an erosive challenge. This crossover in situ study was performed in two phases (A and B), involving ten volunteers. In each phase, they wore acrylic palatal appliances, each containing 3 human enamel blocks, during 7 days. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 minutes, 4 times a day. Dentifrice was used to brush the volunteers' teeth, 4 times a day, during 1 minute, before the appliance was replaced into the mouth. In phases A and B the dentifrices used had the same formulation, except for the absence (PD) or presence (FD) of fluoride, respectively. Enamel alterations were determined using profilometry, microhardness (%SMHC), acid- and alkali-soluble F analysis. The data were tested using ANOVA (p < 0.05). The concentrations (mean ± SD) of alkali- and acid-soluble F (μgF/cm 2) were, respectively, PD: 1.27 a ± 0.70/2.24∧ A ± 0.36 and FD: 1.49 a ± 0.44/2.24∧ ± 0.67 (p > 0.05). The mean wear values (± SD, μm) were PD: 3.63 a ± 1.54 and FD: 3.54 a ± 0.90 (p > 0.05). The mean %SMHC values (± SD) were PD: 89.63 a ± 4.73 and FD: 87.28 a ± 4.01 (p > 0.05). Thus, we concluded that the residual fluoride from the fluoride-containing dentifrice did not protect enamel against erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate the erosive capacity of fermented milk beverages, as well as some of their properties that affect the demineralization of dental enamel (pH, buffering capacity, fluoride, calcium and phosphorus contents). Three different batches of 6 commercial brands of fermented milk beverages were analyzed. pH evaluation was accomplished using a potentiometer. The buffering capacity was measured by adding 1 mol L -1 NaOH. Fluoride concentration was assessed by an ion specific electrode after hexamethyldisiloxane-facilitated diffusion, and calcium and phosphorus concentrations were assessed by a colorimetric test using a spectrophotometer. Sixty specimens of bovine enamel were randomly assigned to 6 groups (n = 10). They were exposed to 4 cycles of demineralization in the fermented milk and remineralization in artificial saliva. Enamel mineral loss was determined by surface microhardness (%SMHC) and profilometric tests. The samples' pH ranged from 3.51 to 3.87; the buffering capacity ranged from 470.8 to 804.2 μl of 1 mol L -1 NaOH; the fluoride concentration ranged from 0.027 to 0.958 μgF/g; the calcium concentration ranged from 0.4788 to 0.8175 mgCa/g; and the phosphorus concentration ranged from 0.2662 to 0.5043 mgP/g. The %SMHC ranged from-41.0 to -29.4. The enamel wear ranged from 0.15 μm to 0.18 μm. In this in vitro study, the fermented milk beverages did not promote erosion of the dental enamel, but rather only a superficial mineral loss.