992 resultados para Density-matrices
Resumo:
Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participant's co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.
Resumo:
A few simple three-atom thermoneutral radical exchange reactions (i.e. A + BC --> AB + C) are examined by ab initio SCF methods. Emphasis is laid on the detailed analysis of density matrices rather than on energetics. Results reveal that the sum of the bond orders of the breaking and forming bonds is not conserved to unity, due to development of free valence on the migrating atom 'B' in the transition state. Bond orders, free valence and spin densities on the atoms are calculated. The present analysis shows that the bond-cleavage process is always more advanced than the bond-formation process in the transition state. Further analysis shows a development of the negative spin density on the migrating atom 'B' in the transition state. The depletion of the alpha-spin density on the radical site "A" in the reactant during the reaction lags behind the growth of the alpha-spin density on the terminal atom "C" of the reactant bond, 'B-C' in the transition state. But all these processes are completed simultaneously at the end of the reaction. Hence, the reactions are asynchronous but kinetically concerted in most cases.
Resumo:
We investigate evolution of quantum correlations in ensembles of two-qubit nuclear spin systems via nuclear magnetic resonance techniques. We use discord as a measure of quantum correlations and the Werner state as an explicit example. We, first, introduce different ways of measuring discord and geometric discord in two-qubit systems and then describe the following experimental studies: (a) We quantitatively measure discord for Werner-like states prepared using an entangling pulse sequence. An initial thermal state with zero discord is gradually and periodically transformed into a mixed state with maximum discord. The experimental and simulated behavior of rise and fall of discord agree fairly well. (b) We examine the efficiency of dynamical decoupling sequences in preserving quantum correlations. In our experimental setup, the dynamical decoupling sequences preserved the traceless parts of the density matrices at high fidelity. But they could not maintain the purity of the quantum states and so were unable to keep the discord from decaying. (c) We observe the evolution of discord for a singlet-triplet mixed state during a radio-frequency spin-lock. A simple relaxation model describes the evolution of discord, and the accompanying evolution of fidelity of the long-lived singlet state, reasonably well.
Resumo:
In a quantum system, there may be many density matrices associated with a state on an algebra of observables. For each density matrix, one can compute its entropy. These are, in general, different. Therefore, one reaches the remarkable possibility that there may be many entropies for a given state R. Sorkin (private communication)]. This ambiguity in entropy can often be traced to a gauge symmetry emergent from the nontrivial topological character of the configuration space of the underlying system. It can also happen in finite-dimensional matrix models. In the present work, we discuss this entropy ambiguity and its consequences for an ethylene molecule. This is a very simple and well-known system, where these notions can be put to tests. Of particular interest in this discussion is the fact that the change of the density matrix with the corresponding entropy increase drives the system towards the maximally disordered state with maximum entropy, where Boltzman's formula applies. Besides its intrinsic conceptual interest, the simplicity of this model can serve as an introduction to a similar discussion of systems such as colored monopoles and the breaking of color symmetry.
Resumo:
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Resumo:
Recent theoretical developments in the reggeization of inelastic processes involving particles with high spin are incorporated into a model of vector meson production. A number of features of experimental differential cross sections and density matrices are interpreted in terms of this model.
The method chosen for reggeization of helicity amplitudes first separates kinematic zeros and singularities from the parity-conserving amplitudes and then applies results of Freedman and Wang on daughter trajectories to the remaining factors. Kinematic constraints on helicity amplitudes at t = 0 and t = (M – MΔ)2 are also considered.
It is found that data for reactions of types πN→VN and πN→VΔ are consistent with a model of this type in which all kinematic constraints at t = 0 are satisfied by evasion (vanishing of residue functions). As a quantitative test of the parametrization, experimental differential cross sections of vector meson production reactions dominated by pion trajectory exchange are compared with the theory. It is found that reduced residue functions are approximately constant, once the kinematic behavior near t = (M – MΔ)2 has been removed.
The alternative possibility of conspiracy between amplitudes is also discussed; and it is shown that unless conspiracy is present, some amplitudes allowed by angular momentum conservation will not contribute with full strength in the forward direction. An example, γp→π+n in which the data for dσ/dt indicate conspiracy, is studied in detail.
Resumo:
Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.
Resumo:
The optimal entanglement manipulation for a single copy of mixed states of two qubits is to transform it to a Bell diagonal state. In this paper we derive an explicit form of the local operation that can realize such a transformation. The result obtained is universal for arbitrary entangled two-qubit states and it discloses that the corresponding local filter is not unique for density matrices with rank n = 2 and can be exclusively determined for that with n = 3 and 4. As illustrations, a four-parameter family of mixed states are explored, the local filter as well as the transformation probability are given explicitly, which verify the validity of the general result.
Resumo:
As semiconductor electronic devices scale to the nanometer range and quantum structures (molecules, fullerenes, quantum dots, nanotubes) are investigated for use in information processing and storage, it, becomes useful to explore the limits imposed by quantum mechanics on classical computing. To formulate the problem of a quantum mechanical description of classical computing, electronic device and logic gates are described as quantum sub-systems with inputs treated as boundary conditions, outputs expressed.is operator expectation values, and transfer characteristics and logic operations expressed through the sub-system Hamiltonian. with constraints appropriate to the boundary conditions. This approach, naturally, leads to a description of the subsystem.,, in terms of density matrices. Application of the maximum entropy principle subject to the boundary conditions (inputs) allows for the determination of the density matrix (logic operation), and for calculation of expectation values of operators over a finite region (outputs). The method allows for in analysis of the static properties of quantum sub-systems.
Resumo:
The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The key requirement for quantum networking is the distribution of entanglement between nodes. Surprisingly, entanglement can be generated across a network without direct transfer - or communication - of entanglement. In contrast to information gain, which cannot exceed the communicated information, the entanglement gain is bounded by the communicated quantum discord, a more general measure of quantum correlation that includes but is not limited to entanglement. Here, we experimentally entangle two communicating parties sharing three initially separable photonic qubits by exchange of a carrier photon that is unentangled with either party at all times. We show that distributing entanglement with separable carriers is resilient to noise and in some cases becomes the only way of distributing entanglement through noisy environments.
Resumo:
We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.
Resumo:
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a ""loss of purity"" until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
Resumo:
We show that for any multivariate I( 1) process which does not cointegrate, it is possible to find another process sufficient1y elose to it where cointegration applies. Closeness is defined in terms of the spectral density matrices of the respective processes in differences, i.e., a metric which takes into account only the information in the (centred) second moments. The result may explain why in practice cointegration is found a bit "too often". Examples developing this point and simulations giving an insight on the metric used are also presented.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)