991 resultados para Density, sigma, in situ


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the "Atlantic Expedition" in1965 (IQSY) a comprehensive bathymetric survey and a few hydrographic stations were made by R.V. "Meteor" in the equatorial region of the Mid-Atlantic Ridge. The survey results are shown in a bythymetric chart covering the western parts of the Romanche- and Chain Fracture Zones. West of the original Romanche Trench another deep trench with a medium depth of 6000 m was discovered. The maximum sounding obtained was 7028 m. Both trenches apparently belong to the same fracture zone, but are distinctly separated from each other. The estern boundary of the trench against the Brasil Basin is formed by a sill rising to a depth of about 4400 m. The serial hydrographic observations give some indications of the flow of the cold Westatlantic deep water in the fracture zone area and its influence on the hydrographic conditions in the East-Atlantic Basin. The upper limit of the nearly homogenious Westatlantic bottom water with an Antarctic components lies about 4400 m. The water mass entering the system of trenches of the Romanche Fracture Zone over the western sill originates from the lower part of the discontinuity layer lying above the bottom water. Potential temperatures of 0.6°C were the lowest observed by "Meteor" in the western trench. There seems to be a remarkable tongue of relatively high salinity and a minimum of oxygen in the deep water of this trench. At present we can only speculate upon the origin of this highly saline deep water tongue underneath the eastward moving relatively thin layer of less saline Westatlantic deep water. In the range of the sill separating both trenches a lee wave is indicated by the distribution of salinity and oxygen, which implies a vertical transport of water masses. Caused by this transport it is assumed that relatively cold water may be lifted temporarily to a depth, where it can pass the northbounding ridge, thus getting directly into the Sierra Leone Basin. In the original Romanche Trench the cold Westatlantic deep water seems to fill the whole trough, but its extension remains limited to the trench itself. The water masses found east of the sill separating the trench from the East-Atlantic Basin originate from the lower part of the discontinuity layer. With potential temperatures of about 1.3°C they are much warmer than those observed in the Romanche Trench bottom water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurements were obtained during two North Sea wide STAR-shaped cruises during summer 1986 and winter 1987, which were performed to investigate the circulation induced transport and biologically induced pollutant transfer within the interdisciplinary research in the project "ZISCH - Zirkulation und Schadstoffumsatz in der Nordsee / Circulation and Contaminant Fluxes in the North Sea (1984-1989)". The inventory presents parameters measured on hydrodynamics, nutrient dynamics, ecosystem dynamics and pollutant dynamics in the pelagic and benthic realm. The research program had the objective of quantifying fluxes of major budgets, especially contaminants in the North Sea. In spring 1986, following the phytoplankton spring bloom, and in late winter 1987, at minimum primary production activity, the North Sea ecosystem was investigated on a station net covering the whole North Sea. The station net was shaped like a star. Sampling started in the centre, followed by the northwest section and moving counter clockwise around the North Sea following the residual currents. By this strategy, a time series was measured in the central North Sea and more synoptic data sets were obtained in the individual sections. Generally advection processes have to be considered when comparing the data from different stations. The entire sampling period lasted for more than six weeks in each cruise. Thus, a time-lag should be considered especially when comparing the data from the eastern and the western part of the central and northern North Sea, where samples were taken at the beginning and at the end of the campaign. The ZISCH investigations represented a qualitatively and quantitatively new approach to North Sea research in several respects. (1) The first simultaneous blanket coverage of all important biological, chemical and physical parameters in the entire North Sea ecosystem; (2) the first simultaneous measurements of major contaminants (metals and organohaline compounds) in the different ecosystem compartments; (3) simultaneous determinations of atmospheric inputs of momentum, energy and matter as important ecosystem boundary conditions; (4) performance of the complex measurement program during two seasons, namely the spring plankton bloom and the subsequent winter period of minimal biological activity; and (5) support of data analysis and interpretation by oceanographic and meteorological numerical models on the same scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known regarding the distribution of volatile halogenated organic compounds (halocarbons) in Antarctic waters, and their relation to biophysical variables. During the austral summer (December to January) in 2007-08 halocarbon and pigment concentrations were measured in the Amundsen (100-130ºW) and Ross Sea (158ºW- 160ºE). In addition, halocarbons were determined in air, snow and sea ice. The distribution of halocarbons was influenced to a large extent by sea ice, and to a much lesser extent by pelagic biota. Concentrations of naturally produced halocarbons were elevated in the surface mixed layer in ice covered areas compared to open waters in polynyas and in the bottom waters of the Ross Sea. Higher concentrations of halocarbons were also found in sea ice brine compared to the surface waters. Incubations of snow revealed an additional source of halocarbons. The distribution of halocarbons also varied considerably between the Amundsen and Ross Seas, mainly due to the different oceanographic settings. For iodinated compounds, weak correlations were found with the presence of pigments indicative of Phaeocystis, mainly in the Ross Sea. Saturation anomalies for the surface water and brine (in sea ice) were determined for the two indicator halocarbons bromoform and chloriodomethane. For bromoform, the surface water anomalies varied between -83 and 11%, whereas chloroiodomethane anomalies varied between -6 and 1,200%. The saturation anomalies for brine varied between -56 to 120% for bromoform and 91 to 22,000% for chloroiodomethane, indicating that sea ice could be a possible source both to the atmosphere and the surface waters. Polar waters can have a substantial impact on global halocarbon budgets and need to be included in large-scale assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strong El Niño developed in early 2015. Measurements from a research cruise on the RV Sonne in October 2015 near the equator east of the Galapagos Islands and off the shelf of Peru, are used to investigate changes related to El Niño in the upper ocean in comparison with earlier cruises in this region. At the equator at 85°30' W, a clear temperature increase leading to lower densities in the upper 350 m, despite a concurrent salinity increase from 40 to 350 m, developed in October 2015. Lower nutrient concentrations were also present in the upper 200 m, and higher oxygen concentrations were observed between 40 and 130 m. Except for the upper 60 m at 2°30' S, however, there was no obvious increase in oxygen concentrations at sampling stations just north (1° N) and south (2°30' S) of the equator at 85°30' W. In the equatorial current field, the Equatorial Undercurrent (EUC) east of the Galapagos Islands almost disappeared in October 2015, with a transport of only 0.02 Sv in the equatorial channel between 1° S and 1° N, and a weak current band of 0.78 Sv located between 1° S and 2°30' S. Such near-disappearances of the EUC in the eastern Pacific seem to occur only during strong El Niño events. Off the Peruvian shelf at ~9° S, where the sea surface temperature (SST) was elevated, upwelling was modified, and warm, saline and oxygen rich water was upwelled. Despite some weak El Niño related SST increase at ~12 to 16° S, the upwelling of cold, low salinity and oxygen-poor water was still active at the easternmost stations at three sections at ~12° S, ~14° S and ~16° S, while further west on these sections a transition to El Niño conditions appeared. Although in early 2015 the El Niño was strong and in October 2015 showed a clear El Niño influence on the EUC, in the eastern tropical Pacific the measurements only showed developing El Niño water mass distributions. In particular the oxygen distribution indicated the ongoing transition from 'typical' to El Niño conditions progressing southward along the Peruvian shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multi-platform four-dimensional observational approach. Research vessel, multiple glider and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The dataset consists of more than 10000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ca. 0.25 m/s at 100 to 200 m depth was observed. Starting on January 20 a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentrations less than 1mol/kg, an elevated nitrogen-deficit of ca. 17µmol/l and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small scale salinity and oxygen structures were formed by along-isopycnal stirring and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open-ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.