733 resultados para Dengue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate the spatial clustering and dynamic dispersion of dengue incidence in Queensland, Australia. We used Moran’s I statistic to assess the spatial autocorrelation of reported dengue cases. Spatial empirical Bayes smoothing estimates were used to display the spatial distribution of dengue in postal areas throughout Queensland. Local indicators of spatial association (LISA) maps and logistic regression models were used to identify spatial clusters and examine the spatio-temporal patterns of the spread of dengue. The results indicate that the spatial distribution of dengue was clustered during each of the three periods of 1993–1996, 1997–2000 and 2001–2004. The high-incidence clusters of dengue were primarily concentrated in the north of Queensland and low-incidence clusters occurred in the south-east of Queensland. The study concludes that the geographical range of notified dengue cases has significantly expanded in Queensland over recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From September 2000 to June 2003, a community-based program for dengue control using local predacious copepods of the genus Mesocyclops was conducted in three rural communes in the central Vietnam provinces of Quang Nam, Quang Ngai, and Khanh Hoa. Post-project, three subsequent entomologic surveys were conducted until March 2004. The number of households and residents in the communes were 5,913 and 27,167, respectively, and dengue notification rates for these communes from 1996 were as high as 2,418.5 per 100,000 persons. Following knowledge, attitude, and practice evaluations, surveys of water storage containers indicated that Mesocyclops spp. already occurred in 3-17% and that large tanks up to 2,000 liters, 130-300-liter jars, wells, and some 220-liter metal drums were the most productive habitats for Aedes aegypti. With technical support, the programs were driven by communal management committees, health collaborators, schoolteachers, and pupils. From quantitative estimates of the standing crop of third and fourth instars from 100 households, Ae. aegypti were reduced by approximately 90% by year 1, 92.3-98.6% by year 2, and Ae. aegypti immature forms had been eliminated from two of three communes by June 2003. Similarly, from resting adult collections from 100 households, densities were reduced to 0-1 per commune. By March 2004, two communes with no larvae had small numbers but the third was negative; one adult was collected in each of two communes while one became negative. Absolute estimates of third and fourth instars at the three intervention communes and one left untreated had significant correlations (P = 0.009-< 0.001) with numbers of adults aspirated from inside houses on each of 15 survey periods. By year 1, the incidence of dengue disease in the treated communes was reduced by 76.7% compared with non-intervention communes within the same districts, and no dengue was evident in 2002 and 2003, compared with 112.8 and 14.4 cases per 100,000 at district level. Since we had similar success in northern Vietnam from 1998 to 2000, this study demonstrates that this control model is broadly acceptable and achievable at community level but vigilance is required post-project to prevent reinfestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2000-2001, dengue virus type 1 has circulated in the Pacific region. However, in 2007, type 4 reemerged and has almost completely displaced the strains of type 1. If only 1 serotype circulates at any time and is replaced approximately every 5 years, DENV-3 may reappear in 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic bacterial promoter in the cDNA encoding the dengue virus (DENV) 5′ UTR. Following cryptic transcription in E. coli, protein expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus cDNA.