10 resultados para Dendroclimatology
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Synoptic dendroclimatology uses dated tree rings to study and reconstruct climate from the viewpoint of the climate's weather components and their relationship to atmospheric circulation. This approach defines a connection between large-scale circulation and ring-width variation at local sites using correlation fields, composite maps, indexing, and other circulation-based methodologies.
Resumo:
We present here the first statistically calibrated and verified tree-ring reconstruction of climate from continental Southeast Asia.The reconstructed variable is March-May (MAM) Palmer Drought Severity Index (PDSI) based on ring widths from 22 trees (42 radial cores) of rare and long-lived conifer, Fokienia hodginsii (Po Mu as locally called) from northern Vietnam. This is the first published tree ring chronology from Vietnam as well as the first for this species. Spanning 535 years, this is the longest cross-dated tree-ring series yet produced from continental Southeast Asia. Response analysis revealed that the annual growth of Fokienia at this site was mostly governed by soil moisture in the pre-monsoon season. The reconstruction passed the calibration-verification tests commonly used in dendroclimatology, and revealed two prominent periods of drought in the mid-eighteenth and late-nineteenth enturies. The former lasted nearly 30 years and was concurrent with a similar drought over northwestern Thailand inferred from teak rings, suggesting a ``mega-drought'' extending across Indochina in the eighteenth century. Both of our reconstructed droughts are consistent with the periods of warm sea surface temperature (SST)anomalies in the tropical Pacific. Spatial correlation analyses with global SST indicated that ENSO-like anomalies might play a role in modulating droughts over the region, with El Nio (warm) phases resulting in reduced rainfall. However, significant correlation was also seen with SST over the Indian Ocean and the north Pacific,suggesting that ENSO is not the only factor affecting the climate of the area. Spectral analyses revealed significant peaks in the range of 53.9-78.8 years as well as in the ENSO-variability range of 2.0 to 3.2 years.
Resumo:
A 50-year tree-ring delta O-18 chronology of Abies spectabilis growing close to the tree line (3850 m asl) in the Nepal Himalaya is established to explore its dendroclimatic potential. Response function analysis with ambient climatic records revealed that tree-ring delta O-18 is primarily governed by rainfall during the monsoon season (June September), and the regression model accounts for 35% of the variance in rainfall. Extreme dry years identified in instrumental weather data are detected in the delta O-18 chronology. Further, tree-ring delta O-18 is much more sensitive to rainfall fluctuations than other tree-ring parameters such as width and density typically used in dendroclimatology. Correlation analyses with Nino 3.4 SST reveal time-dependent behavior of ENSO-monsoon relationships. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
X-rays were initially used for the inspection of special-purpose wood pieces for quantitative evaluation properties of different species. X-ray densitometry has had its use expanded ill dendroclimatology of Picea engelmannii trees. Subsequent laboratories developed applications of X-ray densitometry for environmental, wood science and technology, and related areas. This paper describes the basic methodology of X-ray densitometry applied to the eucalypt wood analysis, as well its presenting the results of applications in three areas: (i) evaluation of wood biodegradation by white rot fungi, (ii) detection of sapwood and heartwood, and (iii) determination of the effect of management oil wood properties. The wood decayed by white rot fungi was detected by X-ray densitometry with it decreasing wood density due to the biodegradation of cell wall components. The sapwood and heartwood of eucalypts were separated in response to the attenuation of X-rays, reflected by the wood anatomical structure and chemical composition. Also, Ill eucalypt trees after the application of irrigation and i characteristic wood density profiles were detected. Ill addition, the significant potential of X-ray densitometry for eucalypt wood research and analysis is discussed.
Resumo:
Tree-ring chronologies are a powerful natural archive to reconstruct summer temperature variations of the late Holocene with an annual resolution. To develop these long-term proxy records tree-ring series are commonly extended back in time by combining samples from living trees with relict dead material preserved onshore or in lakes. Former studies showed that low frequency variations in such reconstructions can be biased if the relict and recent material is from different origins. A detailed analysis of the influence of various ecological (micro-) habitats representing the recent part is required to estimate potential errors in temperature estimates. The application of collective detrending methods, that comprise absolute growth rates, can produce errors in climate reconstructions and results in an underestimation of past temperatures. The appearance of these kind of micro-site effects is a wide-spread phenomenon that takes place all over Fennoscandia. Future research in this key region for dendroclimatology should take this issue into account. Especially the higher climate response at the lakeshore site is interesting to achieve smaller uncertainties when a tree-ring series is transformed to temperature anomalies. For new composite chronologies the main aim should be to minimize potential biases and this includes also micro-site effects.
Resumo:
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.
Resumo:
Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.
Resumo:
The long Irish oak tree-ring chronology, developed for archaeological dating and radiocarbon calibration, is the longest of any in northwest maritime Europe, spanning most of the Holocene (7,272 years). Unfortunately, the rings widths do not carry a strong climate signal and the record hasnever been satisfactorily applied for dendroclimatic reconstruction. This pilot study explores the potential for extracting a climate signal from Irish oaks by comparing the stable oxygen isotopes ratios from 10 oak tree cores (Quercus robur and Quercus petraea L.) collected across the Armagh region of NE Ireland with local and regional climatic and stable isotopic data. Statistically significant correlations between isotope ratios and the amount of summer precipitation (r = -0.44) point to the isotopic composition of summer rainfall as the dominant signal. Including the Armagh data into an extended regional oxygen isotope series did not reduce the correlation coefficient with regional precipitation (r = -0.68, p < 0.01). Correlations of this magnitude in dendro-hydroclimatology are typically restricted to trees growing at their ecological limits. This research suggests that there is considerable potential for including living trees and ancient timbers from Ireland into a regional composite to reconstruct the summer hydroclimate of Britain and Ireland.