186 resultados para Dendrimer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (R-g) varies as N-1/3, the self-diffusion constant (D) scales, surprisingly, as N-alpha, with alpha=0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the structural behavior and thermodynamics of the complexation of siRNA with poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) through fully atomistic molecular dynamics (MD) simulations accompanied by free energy calculations and inherent structure determination. We have also done simulation with one siRNA and two dendrimers (2 x G3 or 2xG4) to get the microscopic picture of various binding modes. Our simulation results reveal the formation of stable siRNA-dendrimer complex over nanosecond time scale. With the increase in dendrimcr generation, the charge ratio increases and hence the binding energy between siRNA and dendrimer also increases in accordance with available experimental measurements. Calculated radial distribution functions of amines groups of various subgenerations in a given generation of dendrimer and phosphate in backbone of siRNA reveals that one dendrimer of generation 4 shows better binding with siRNA almost wrapping the dendrimer when compared to the binding with lower generation dendrimer like G3. In contrast, two dendrimers of generation 4 show binding without siRNA wrapping the den-rimer because of repulsion between two dendrimers. The counterion distribution around the complex and the water molecules in the hydration shell of siRNA give microscopic picture of the binding dynamics. We see a clear correlation between water. counterions motions and the complexation i.e. the water molecules and counterions which condensed around siRNA are moved away from the siRNA backbone when dendrimer start binding to the siRNA back hone. As siRNA wraps/bind to the dendrimer counterions originally condensed onto siRNA (Na-1) and dendrimer (Cl-) get released. We give a quantitative estimate of the entropy of counterions and show that there is gain in entropy due to counterions release during the complexation. Furthermore, the free energy of complexation of IG3 and IG4 at two different salt concentrations shows that increase in salt concentration leads to the weakening of the binding affinity of siRNA and dendrimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At physiological pH, a PAMAM dendrimer is positively charged and can effectively bind negatively charged DNA. Currently, there has been great interest in understanding this complexation reaction both for fundamental (as a model for complex biological reactions) as well as for practical (as a gene delivery material and probe for sensing DNA sequence) reasons. Here, we have studied the complexation between double-stranded DNA (dsDNA) and various generations of PAMAM dendrimers (G3-05) through atomistic molecular dynamics simulations in the presence of water and ions. We report the compaction of DNA on a nanosecond time scale. This is remarkable, given the fact that such a short DNA duplex with a length close to 13 nm is otherwise thought to be a rigid rod. Using several nanoseconds long MD simulations, we have observed various binding modes of dsDNA and dendrimers for various generations of PAMAM dendrimers at varying charge ratios, and it confirms some of the binding modes proposed earlier. The binding is driven by the electrostatic interaction, and the larger the dendrimer charge, the stronger the binding affinity. As DNA wraps/binds to the dendrimer, counterions originally condensed onto DNA (Na+) and the dendrimer (Cl-) get released. We calculate the entropy of counterions and show that there is gain in entropy due to counterion release during the complexation. MD simulations demonstrate that, when the charge ratio is greater than 1 (as in the case of the G5 dendrimer), the optimal wrapping of DNA is observed. Calculated binding energies of the complexation follow the trend G5 > 04 > 03, in accordance with the experimental data. For a lower-generation dendrimer, such as G3, and, to some extent, for G4 also, we see considerable deformation in the dendrimer structure due to their flexible nature. We have also calculated the various helicoidal parameters of DNA to study the effect of dendrimer binding on the structure of DNA. The B form of the DNA is well preserved in the complex, as is evident from various helical parameters, justifying the use of the PAMAM dendrimer as a suitable delivery vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated (corresponding to neutral pH) poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single strand DNAs (ssDNAs). The four ssDNA strands that are attached via an alkythiolate [-S(CH(2))(6)-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers are observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich (having more adenine and guanine) ssDNA strands than pyrimidine rich (thymine and cytosine) ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As the G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer than G3 dendrimer. This might indicate that DNA functionalized G3 dendrimer is more suitable to construct higher order nanostructures. The linker molecule was also found to undergo drastic conformational change during the simulation. During nanosecond long simulation some portion of the linker molecule was found to be lying nearly flat on the surface of the dendrimer molecule. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticles was found to be independent of base composition of ssDNAs and was observed to be around 19.5 angstrom and 22.4 angstrom when we used G3 and G4 PAMAM dendrimers as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecules apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticles and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. (c) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using all atomistic molecular dynamics (MD) simulations we report a microscopic picture of the carbon nanotube (6,5)-dendrimer complex for PAMAM dendrimers of generations 2 to 4. We study the compact wrapping conformations of the dendrimer onto the nanotube surface for all the three generations of PAMAM dendrimer. A high degree of wrapping for the non-protonated dendrimer is observed as compared to the protonated dendrimer. For comparison, we also study the interaction of another dendrimer, poly(propyl ether imine) (PETIM), with the nanotube. The results of the distance of closest approach as well as the number of close contacts between the nanotube and the dendrimer reveal that the PAMAM dendrimer interacts strongly as compared to the PETIM dendrimer. We also calculate the binding energy between the nanotube and the dendrimer using MM/PBSA methods and attribute the strong binding to the charge transfer between them. Dendrimer wrapping on the CNT will make it soluble and the dendrimer can act as an efficient dispersing agent for the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendrimeric nanoparticles are potential drug delivery devices which can enhance the solubility of hydrophobic drugs, thus increasing their bioavailability and sustained release action. A quantitative understanding of the dendrimer-drug interactions can give valuable insight into the solubility and release profile of hydrophobic drug molecules in various solvent conditions. Fully atomistic molecular dynamics (MD) simulations have been performed to study the interactions of G5 PPIEDA (G5 ethylenediamine cored poly(propylene imine)) dendrimer and two well known drugs (Famotidine and Indomethacin) at different pH conditions. The study suggested that at low pH the dendrimer-drug complexes are thermodynamically unstable as compared to neutral and high pH conditions. Calculated Potential of Mean Force (PMF) by umbrella sampling showed that the release of drugs from the dendrimer at low pH is spontaneous, median release at neutral pH and slow release at high pH. In addition, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding free energy calculations were also performed at each umbrella sampling window to identify the various energy contributions. To understand the effect of dendrimer chemistry and topology on the solubility and release profile of drugs, this study is extended to explore the solubility and release profile of phenylbutazone drug complexed with G3 poly(amidoamine) and G4 diaminobutane cored PPI dendrimers. The results indicate that the pH-induced conformational changes in dendrimer, ionization states, dendrimer type and pK(a) of the guest molecules influence the free energy barrier and stability of complexation, and thus regulate drug loading, solubility and release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bare faceted gold nanoparticles (AuNPs) have a tendency to aggregate through a preferred attachment of the 111] surfaces. We have used fully atomistic classical molecular dynamics simulations to obtain a quantitative estimate of this surface interaction using umbrella sampling (US) at various temperatures. To tune this surface interaction, we use polyamidoamine (PAMAM) dendrimer to coat the gold surface under various conditions. We observe a spontaneous adsorption of the protonated as well as nonprotonated PAMAM dendrimer on the AuNP surface. The adsorbed dendrimer on the nanoparticle surface strongly alters the interaction between the nanoparticles. We calculate the interaction between dendrimercoated AuNPs using US and show how the interaction between two bare faceted AuNPs can be tuned as a function of dendrimer concentration and charge (pH dependent) With appropriate choice of the dendrimer concentration and charge, two strongly interacting AuNPs can be made effectively noninteracting. Our simulation results demonstrate a strategy to tune the nanoparticle interaction, which can help in engineering self-assembly of such nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negatively charged DNA can be compacted by positively charged dendrimers and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. We report various elastic properties of short double-stranded DNA (dsDNA) and the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations. In equilibrium at room temperature, the contour length distribution P(L) and the end-to-end distance distribution P(R) are nearly Gaussian, the former gives an estimate of the stretch modulus gamma(1) of dsDNA in quantitative agreement with the literature value. The bend angle distribution P(.) of the dsDNA also has a Gaussian form and allows to extract a persistence length, L-p of 43 nm. When the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant but the effective bending rigidity estimated from the end-to-end distance distribution decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a charged object such as a dendrimer or protein.