989 resultados para Demyelinating Diseases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS). Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter x(c)(-), an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system x(c)(-) in glutamate homeostasis alterations in MS pathology. -- Methods: Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT) was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and in samples of MS patients. -- Results and discussion: We show here that human activated monocytes release glutamate through cystine/glutamate antiporter x(c)(-) and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS) and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes. -- Conclusions: Together, these results reveal that increased expression of the cystine/glutamate antiporter system x(c)(-) in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental allergic encephalomyelitis is characterized by invasion of lymphocytes and macrophages into the central nervous system resulting in inflammation, edema, and demyelination. Sera from Lewis rats from 7-95 days after immunization with purified guinea pig CNS myelin were examined with respect to their ability to opsonize myelin. This was correlated with the appearance of antibody components and the relative amounts of antibody to myelin basic protein (MBP) and proteolipid protein (PLP). Sera from rats 10-95 days after immunization preincubated with purified myelin induced phagocytosis of myelin by cultured macrophages with the resulting production of cholesterol ester. This opsonization activity as measured by the percentage of cholesterol esterified reached a peak at 26-27 days after immunization but remained significantly elevated up to 95 days post-immunization compared to the activity of serum from the Freund's adjuvant-injected controls. Immunoblots of the sera revealed a gradual increase in antibody activity against myelin components. ELISA assays for MBP and PLP antibody showed a similar pattern. Antibody to galactocerebroside (GC) was not detected by immunostains nor by the ELISA assay. Areas of demyelination were observed histologically by luxol-fast blue stained spinal cords up to 60 days post-immunization. These results indicate that antibodies to myelin protein when given access to myelin through or within the blood brain barrier could initiate or enhance the phagocytic response by peripheral or resident macrophages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a case study of a female who received an allogeneic bone marrow transplantation (BMT) from a sex-mismatched related donor and who, after a twenty-year interval, developed an acute fulminant biopsy-proven demyelinating disorder of cerebral white matter which followed a remitting-relapsing chronic course. In situ hybridization studies using Y-chromosome-specific markers revealed Y-chromosome-positive mononuclear cells in biopsy samples of white matter. Magnetic resonance imaging (MRI) studies of the asymptomatic healthy male donor showed multiple white matter lesions. These observations suggest that donor lymphocytes were sensitized to central nervous system (CNS) antigens prior to or at the time of transplantation but remained dormant for 20 years before becoming activated to cause widespread demyelination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, we evaluated stimulation of the angiotensin type 2 receptor (AT2R) by the selective non-peptide agonist Compound 21 (C21) as a novel therapeutic concept for the treatment of multiple sclerosis using the model of experimental autoimmune encephalomyelitis (EAE) in mice. C57BL-6 mice were immunized with myelin-oligodendrocyte peptide and treated for 4 weeks with C21 (0.3 mg/kg/day i.p.). Potential effects on myelination, microglia and T-cell composition were estimated by immunostaining and FACS analyses of lumbar spinal cords. The in vivo study was complemented by experiments in aggregating brain cell cultures and microglia in vitro. In the EAE model, treatment with C21 ameliorated microglia activation and decreased the number of total T-cells and CD4+ T-cells in the spinal cord. Fluorescent myelin staining of spinal cords further revealed a significant reduction in EAE-induced demyelinated areas in lumbar spinal cord tissue after AT2R stimulation. C21-treated mice had a significantly better neurological score than vehicle-treated controls. In aggregating brain cell cultures challenged with lipopolysaccharide (LPS) plus interferon-γ (IFNγ), AT2R stimulation prevented demyelination, accelerated re-myelination and reduced the number of microglia. Cytokine synthesis and nitric oxide production by microglia in vitro were significantly reduced after C21 treatment. These results suggest that AT2R stimulation protects the myelin sheaths in autoimmune central nervous system inflammation by inhibiting the T-cell response and microglia activation. Our findings identify the AT2R as a potential new pharmacological target for demyelinating diseases such as multiple sclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute myelopathy are characterized by spinal cord dysfunction, developing sensitive, motor and autonomic signs and symptons. Since they are relatively rare, there are some difficulties to early diagnosis and to the beginning of the treatment. So, literature was reviewed to describe the main aetiologies of acute non compressive myelopathy: 1) demyelinating diseases; 2) systemic disease; 3) parainfectious; 4) delayed radiation myelopathy; 5) vascular myelopathy; 6) idiopatic and 7) vitamin B12 deficiency. Besides, we suggest an algorithm to initial approach of these patients and further aethiologic investigation. © Copyright Morelra Jr. Editora.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We assessed chromatic discrimination in multiple sclerosis (MS) patients both with (ON) and without (no ON) a history of optic neuritis using the Cambridge color test (CCT). Our goal was to determine the magnitude and chromatic axes of any color vision losses in both patient groups, and to evaluate age-related changes in chromatic discrimination in both patient groups compared to normals. Using the CCT, we measured chromatic discrimination along the protan, deutan and tritan axes in 35 patients with MS (17 ON eyes) and 74 age matched controls. Color thresholds for both patient groups were significantly higher than controls` along the protan and tritan axes (P < 0.001). In addition, the ON and no-ON groups differed significantly along all three-color axes (p < 0.001). MS patients presented a progressive color discrimination impairment with age (along the deutan and tritan axes) that was almost two times faster than controls, even in the absence of ON. These findings suggest that demyelinating diseases reduce sensitivity to color vision in both red-green and blue-yellow axes, implying impairment in both parvocellular and koniocellular visual pathways. The CCT is a useful tool to help characterize vision losses in MS and the relationship between these losses and degree of optic nerve involvement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the CNS, myelinating oligodendrocytes and axons form a functional unit based on intimate cell-cell interactions. In addition to axonal insulation serving to increase the conduction velocity of electrical impulses, oligodendrocytes provide trophic support to neurons essential for the long-term functional integrity of axons. The glial signals maintaining axonal functions are just at the beginning to become uncovered. Yet, their determination is highly relevant for all types of demyelinating diseases, where lack of glial support significantly contributes to pathology. rnThe present PhD thesis uncovers exosomes as a novel signaling entity in the CNS by which cargo can be transferred from oligodendrocytes to neurons. Exosomes are small membranous vesicles of endocytic origin, which are released by almost every cell type and have been implicated in intercellular communication. Oligodendrocytes secrete exosomes containing a distinct set of proteins as well as mRNA and microRNA. Intriguingly, oligodendroglial exosome release is stimulated by the neurotransmitter glutamate indicating that neuronal electrical activity controls glial exosome release. In this study, the role of exosomes in neuron-glia communication and their implications on glial support was examined. Cortical neurons internalized and accumulated oligodendroglial exosomes in the neuronal cell soma in a time-dependent manner. Moreover, uptake occurred likewise at the somatodendritic and axonal compartment of the neurons via dynamin and clathrin dependent endocytosis. Intriguingly, neuronal internalization of exosomes resulted in functional retrieval of exosomal cargo in vitro and in vivo upon stereotactic injection of Cre recombinase bearing exosomes. Functional recovery of Cre recombinase from transferred exosomes was indicated by acquired reporter recombination in the target cell. Electrophysiological analysis showed an increased firing rate in neurons exposed to oligodendroglial exosomes. Moreover, microarray analysis revealed differentially expressed genes after exosome treatment, indicating functional implications on neuronal gene expression and activity. rnTaken together, the results of this PhD thesis represent a proof of principle for exosome transmission from oligodendrocytes to neurons suggesting a new route of horizontal transfer in the CNS.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Myelinisierung neuronaler Axone ermöglicht eine schnelle und energieeffiziente Weiterleitung von Informationen im Nervensystem. Durch lokale Synthese von Myelinproteinen kann die Myelinschicht, zeitlich und räumlich reguliert, gebildet werden. Dieser Prozess ist abhängig von verschiedensten axonalen Eigenschaften und muss damit lokal reguliert werden. Die Myelinisierung im zentralen sowie im peripheren Nervensystem hängt unter anderem stark von kleinen regulatorischen RNA Molekülen ab. In Oligodendrozyten wird das Myelin Basische Protein (MBP) von der sncRNA715 translational reguliert, indem diese direkt innerhalb der 3’UTR der Mbp mRNA bindet und damit die Proteinsynthese verhindert. Mbp mRNA wird in hnRNP A2‐enthaltenen RNA Granula in die Zellperipherie transportiert, wo in Antwort auf axonale Signale die membranständige Tyrosin‐ Kinase Fyn aktiviert wird, welche Granula‐Komponenten wie hnRNP A2 und F phosphoryliert wodurch die lokale Translation initiiert wird. Während des Transports wird die mRNA durch die Bindung der sncRNA715 translational reprimiert. SncRNAs bilden zusammen mit Argonaut‐Proteinen den microRNA induced silencing complex (miRISC), welcher die translationale Inhibition oder den Abbau von mRNAs vermittelt. In der vorliegenden Arbeit sollte zum einen die Regulation der sncRNA715‐abhängigen translationalen Repression der Mbp mRNA in oligodendroglialen Zellen genauer untersucht werden und im zweiten Teil wurde die Rolle der sncRNA715 in den myelinbildenden Zellen des peripheren Nervensystems, den Schwann Zellen, analysiert. Es konnte in oligodendroglialen Zellen die mRNA‐Expression der vier, in Säugern bekannten Argonaut‐Proteinen nachgewiesen werden. Außerdem konnten die beiden Proteine Ago1 und Ago2 in vitro sowie in vivo detektiert werden. Ago2 interagiert mit hnRNP A2, Mbp mRNA und sncRNA715, womit es als neue Komponente des Mbp mRNA Transportgranulas identifiziert werden konnte. Des Weiteren colokalisiert Ago2 mit der Fyn‐Kinase und alle vier Argonaut‐Proteine werden Fyn‐abhängig Tyrosin‐phosphoryliert. Die Fyn‐abhängige Phosphorylierung der Granula‐Komponenten in Antwort auf axo‐glialen Kontakt führt zum Zerfall des RNA‐Granulas und zur gesteigerten MBP Proteinsynthese. Dies wird möglicherweise durch Abstoßungskräfte der negativ geladenen phosphorylierten Proteine vermittelt, wodurch diese sich voneinander und von der mRNA entfernen. Durch die Ablösung des miRISCs von der Mbp mRNA wird die Translation möglicherweise reaktiviert und die Myelinisierung kann starten. Mit der Identifizierung von Ago2 als neuer Mbp mRNA Transportgranula‐Komponente konnte ein weiterer Einblick in die Regulation der lokalen Translation von MBP gewährt werden. Das Verständnis dieses Prozesses ist entscheidend für die Entwicklung neuer Therapien von demyelinisierenden Erkrankungen, da neue Faktoren als eventuelle Ziele für pharmakologische Manipulationen identifiziert und möglichweise neue Therapiemöglichkeiten entstehen könnten. Im zweiten Teil der Arbeit wurde die translationale Regulation von Mbp mRNA in Schwann Zellen untersucht. Auch Schwann Zell‐Mbp wird als mRNA translational inaktiviert zur axo‐glialen Kontaktstelle transportiert, wo vermutlich auch lokale Translation in Antwort auf spezifische Signale stattfindet. Allerdings bleiben die genauen Mechanismen der mRNA‐Lokalisation und damit verbundenen translationalen Repression bislang ungeklärt. Es konnte hier gezeigt werden, dass auch in Schwann Zellen die sncRNA715 exprimiert wird und die Translation von Mbp reguliert. Überexpression der synthetischen sncRNA715 führt zu einer signifikanten Reduktion der MBP Proteinmengen in differenzierten primären Schwann Zellen. Damit kann vermutet werden, dass die Regulation der lokalen MBP Proteinsynthese in Schwann Zellen der in Oligodendrozyten ähnelt

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microglial cells represent the endogenous immune system of the central nervous system (CNS). Upon pathological insults they reveal their immunological potential aimed at regaining homeostasis. These reactions have long been believed to follow a uniform and unspecific pattern which is irrespective to the underlying disease entity. Evidence is growing that this view seriously underrates microglial competence as the defenders of the CNS. In the present study, microglial cells of 47 dogs were examined ex vivo by means of flow cytometry. Ex vivo examination included immunophenotypic characterization using eight different surface markers and functional studies such as phagocytosis assay and the reactive oxygen species (ROS) generation test. The dogs were classified according to their histopathological diagnoses in disease categories (controls, canine distemper virus (CDV) induced demyelination, other diseases of the CNS) and results of microglial reaction profiles were compared. Immunophenotypic characterization generally revealed relative high conformity in the microglial disease response among the different groups, however the functional response was shown to be more specific. Dogs with intracranial inflammation and dogs with demyelination showed an enhanced phagocytosis, whereas a significant up-regulation of ROS generation was found in dogs with demyelination due to CDV infection. This strongly suggests a specific response of microglia to infection with CDV in the settings of our study and underlines the pivotal role of microglial ROS generation in the pathogenesis of demyelinating diseases, such as canine distemper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complement activation contributes to inflammation and tissue damage in human demyelinating diseases and in rodent models of demyelination. Inhibitors of complement activation ameliorate disease in the rat model antibody-dependent experimental autoimmune encephalomyelitis and rats unable to generate the membrane attack complex of complement develop inflammation without demyelination. The role of the highly active chemotactic and anaphylactic complement-derived peptide C5a in driving inflammation and pathology in rodent models of demyelination has been little explored. Here we have used a small molecule C5a receptor antagonist, AcF-[OPdChaWR], to examine the effects of C5a receptor blockade in rat models of brain inflammation and demyelination. C5a receptor antagonist therapy completely blocked neutrophil response to C5a in vivo but had no effect on clinical disease or resultant pathology in either inflammatory or demyelinating rat models. We conclude that C5a is not required for disease induction or perpetuation in these strongly complement-dependent disease models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The m-AAA protease is a hexameric complex involved in processing of specific substrates and turnover of misfolded polypeptides in the mitochondrial inner membrane. In humans, the m-AAA protease is composed of AFG3L2 and paraplegin. Mutations in AFG3L2 have been implicated in dominant spinocerebellar ataxia (SCA28) and recessive spastic ataxia-neuropathy syndrome (SPAX5). Mutations of SPG7, encoding paraplegin, are linked to hereditary spastic paraplegia. In the mouse, a third subunit AFG3L1 is expressed. Various mouse models recapitulate the phenotype of these neurodegenerative disorders, however, the pathogenic mechanism of neurodegeneration is not completely understood. Here, we studied several mouse models and focused on cell-autonomous role of the m-AAA protease in neurons and myelinating cells. We show that lack of Afg3l2 triggers mitochondrial fragmentation and swelling, tau hyperphosphorylation and pathology in Afg3l2 full-body and forebrain neuron-specific knockout mice. Moreover, deletion of Afg3l2 in adult myelinating cells causes early-onset mitochondrial abnormalities as in the neurons, but the survival of these cells is not affected, which is a contrast to early neuronal death. Despite the fact that myelinating cells have been previously shown to survive respiratory deficiency by glycolysis, total ablation of the m-AAA protease by deleting Afg3l2 in an Afg3l1 null background (DKO), leads to myelinating cell demise and subsequently progressive axonal demyelination. Interestingly, DKO mice show premature hair greying due to loss of melanoblasts. Together, our data demonstrate cell-autonomous survival thresholds to m-AAA protease deficiency, and an essential role of the m-AAA protease to prevent cell death independent from mitochondrial dynamics and the oxidative capacity of the cell. Thus, our findings provide novel insights to the pathogenesis of diseases linked to m-AAA protease deficiency, and also establish valuable mitochondrial dysfunctional mouse models to study other neurodegenerative diseases, such as tauopathies and demyelinating diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.