978 resultados para Delay Tolerant Network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Delay Tolerant Network (DTN) is one where nodes can be highly mobile, with long message delay times forming dynamic and fragmented networks. Traditional centralised network security is difficult to implement in such a network, therefore distributed security solutions are more desirable in DTN implementations. Establishing effective trust in distributed systems with no centralised Public Key Infrastructure (PKI) such as the Pretty Good Privacy (PGP) scheme usually requires human intervention. Our aim is to build and compare different de- centralised trust systems for implementation in autonomous DTN systems. In this paper, we utilise a key distribution model based on the Web of Trust principle, and employ a simple leverage of common friends trust system to establish initial trust in autonomous DTN’s. We compare this system with two other methods of autonomously establishing initial trust by introducing a malicious node and measuring the distribution of malicious and fake keys. Our results show that the new trust system not only mitigates the distribution of fake malicious keys by 40% at the end of the simulation, but it also improved key distribution between nodes. This paper contributes a comparison of three de-centralised trust systems that can be employed in autonomous DTN systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research addresses efficient use of the available energy in resource constrained mobile sensor nodes to prevent early depletion of the battery and maximize the packet delivery rate. This research contributes two energy-aware enhancement strategies to improve the network lifetime and delivery probability for energy constrained applications in the delay-tolerant networking environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the trade-off between delivery delay and energy consumption in a delay tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the packet and the number of destinations that have received the packet. We formulate the problem as a controlled continuous time Markov chain and derive the optimal closed loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ODE (i.e., fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed loop policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the tradeoff between delivery delay and energy consumption in a delay-tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the message and the number of destinations that have received the message. We formulate the problem as a controlled continuous-time Markov chain and derive the optimal closed-loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ordinary differential equation (ODE) (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open-loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed-loop policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human associated delay-tolerant network (HDTN) is a new delay-tolerant network where mobile devices are associated with humans. It can be viewed from both their geographic and social dimensions. The combination of these different dimensions can enable us to more accurately comprehend a delay-tolerant network and consequently use this multi-dimensional information to improve overall network efficiency. Alongside the geographic dimension of the network which is concerned with geographic topology of routing, social dimensions such as social hierarchy can be used to guide the routing message to improve not only the routing efficiency for individual nodes, but also efficiency for the entire network.

We propose a multi-dimensional routing protocol (M-Dimension) for the human associated delay-tolerant network which uses the local information derived from multiple dimensions to identify a mobile node more accurately. Each dimension has a weight factor and is organized by the Distance Function to select an intermediary and applies multi-cast routing. We compare M-Dimension to existing benchmark routing protocols using the MIT Reality Dataset, a well-known benchmark dataset based on a human associated mobile network trace file. The results of our simulations show that M-Dimension has a significant increase in the average success ratio and is very competitive when End-to-End Delay of packet delivery is used in comparison to other multi-cast DTN routing protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human associated delay-tolerant networks (HDTNs) are new networks for DTNs, where mobile devices are associated with humans and demonstrate social related communication characteristics. As most of recent works use real social trace files to study the date forwarding in HDTNs, the privacy protection becomes a serious issue. Traditional privacy protections need to keep the attributes semantics, such as data mining and information retrieval. However, in HDTNs, it is not necessary to keep these meaningful semantics. In this paper, instead, we propose to anonymize the original data by coding to preserve individual's privacy and apply Privacy Protected Data Forwarding (PPDF) model to select the top N nodes to perform the multicast. We use both MIT Reality and Infocom 06 datasets, which are human associated mobile network trace file, to simulate our model. The results of our simulations show that this method can achieve a high data forwarding performance while protect the nodes' privacy as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human associated delay-tolerant networks (HDTNs) are new networks for DTNs, where mobile devices are associated with humans and demonstrate social-related communication characteristics. As most of recent works use the social attributes to study the date forwarding in HDTNs and these attributes are critical for the data provider, how to use the anonymous attributes becomes a serious issue. In this paper, we propose a three-dimensional coordinate model by using the anonymous attributes to perform the data forwarding. We use MIT reality dataset, which is a human associated mobile network trace file, to simulate our model. The results of simulations show that the proposed model can use the anonymous attributes to achieve a high data forwarding performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel scheme for node localization in a Delay-Tolerant Sensor Network (DTN). In a DTN, sensor devices are often organized in network clusters that may be mutually disconnected. Some mobile robots may be used to collect data from the network clusters. The key idea in our scheme is to use this robot to perform location estimation for the sensor nodes it passes based on the signal strength of the radio messages received from them. Thus, we eliminate the processing constraints of static sensor nodes and the need for static reference beacons. Our mathematical contribution is the use of a Robust Extended Kalman Filter (REKF)-based state estimator to solve the localization. Compared to the standard extended Kalman filter, REKF is computationally efficient and also more robust. Finally, we have implemented our localization scheme on a hybrid sensor network test bed and show that it can achieve node localization accuracy within 1m in a large indoor setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimising energy consumption in wireless sensor networks is of dominant importance. Sink mobility is introduced to deal with this problem by approaching the sensor nodes and collecting their data buffers using the less energy demanding single-hop communication. The sink route is very crucial for the data collection operation performed in the network especially when the collection requests generated by the sensors are revealed dynamically to the sink and not known ahead. This paper presents a practical motion heuristic for constructing the sink route based on the dynamic arrival of the collection requests. Three control schemes are proposed for coordinating the interaction of multiple mobile sinks collectively performing the data collection in the network. The main objective is maximising the data collected by each mobile sink while minimising the sleeping time of each sensor awaiting the collection service. Simulation results show the performance of the mobile sinks under the proposed control schemes and the impact of the motion heuristic on the sensors' sleeping time in the network.