11 resultados para Dehydrins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Summer dormancy in perennial grasses has been studied inadequately, despite its potential to enhance plant survival and persistence in Mediterranean areas. The aim of the present work was to characterize summer dormancy and dehydration tolerance in two cultivars of Dactylis glomerata (dormant 'Kasbah', non-dormant 'Oasis') and their hybrid using physiological indicators associated with these traits. Methods Dehydration tolerance was assessed in a glasshouse experiment, while seasonal metabolic changes which produce putative protectants for drought, such as carbohydrates and dehydrins that might be associated with summer dormancy, were analysed in the field. Key Results The genotypes differed in their ability to survive increasing soil water deficit: lethal soil water potential (ψ(s)) was -3(.)4 MPa for 'Kasbah' (although non-dormant), -1(.)3 MPa for 'Oasis', and -1(.)6 MPa for their hybrid. In contrast, lethal water content of apices was similar for all genotypes (approx. 0(.)45 g H2O g d. wt(-1)), and hence the greater survival of 'Kasbah' can be ascribed to better drought avoidance rather than dehydration tolerance. In autumn-sown plants, 'Kasbah' had greatest dormancy, the hybrid was intermediate and 'Oasis' had none. The more dormant the genotype, the lower the metabolic activity during summer, and the earlier the activity declined in spring. Decreased monosaccharide content was an early indicator of dormancy induction. Accumulation of dehydrins did not correlate with stress tolerance, but dehydrin content was a function of the water status of the tissues, irrespective of the soil moisture. A protein of approx. 55 kDa occurred in leaf bases of the most dormant cultivar even in winter. Conclusions Drought avoidance and summer dormancy are correlated but can be independently expressed. These traits are heritable, allowing selection in breeding programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

作物的抗旱性是一个多基因控制的、极为复杂的数量性状,植物对干旱在分子水平上的差异反应通过植物组织生理和细胞生物学水平,最终表现为植物抗旱性的不同。在我国,旱地农业超过耕地面积的50%,但水资源短缺,因此培育和选育抗旱高产作物是发展节水型农业最有效的途径。 青藏高原气候恶劣、年均降雨量少,也是世界大麦初生起源中心,因而蕴藏了十分丰富的与抗逆相关的种质资源材料,从这些特殊的资源材料克隆抗旱基因,不仅对培育抗旱、优质、高产大麦新品种具有重要理论意义和经济价值,而且对整个作物抗旱基础和育种应用研究都具重大促进作用。 为了筛选青稞(裸大麦,Hordeum vulgare ssp. vulgare)抗旱性材料,本研究选用来自青藏高原不同地区的84份青稞为材料,在叶片失水率(water loss rate, WLR)检测分析的基础上,选择失水率值差异显著的12个品种,通过相对含水量(relative water content, RWC)和反复干旱法评价其抗旱性,并通过植株对干旱胁迫下的丙二醛(MDA)含量和游离脯氨酸(free-proline)含量变化,了解不同抗旱性材料的生理反应特性。选择抗旱性强弱不同的品种各两份进行LEA2蛋白基因(Dhn6基因)、LEA3蛋白基因(HVA1基因)的克隆,比较LEA蛋白结构差异与作物抗旱性之间的关系。同时,对抗旱性不同的青稞品种受到干旱时间不同的失水变化率(dynamics water loss rate, DWLR)进行了检测;对抗旱性不同的青稞对照材料进行2 h、4 h、8 h和12 h的快速干旱处理,通过SYBR Green实时荧光定量RT-PCR技术对Dhn6基因、Dhn11基因、Dhn13基因和HVA1基因在不同抗旱性材料受到不同干旱时间处理后的相对表达水平进行了检测。本研究对LEA蛋白基因在抗旱性不同的青稞材料中的干旱胁迫分子水平上的差异反应进行了研究,也对植物的抗旱机理进行了初步探讨。主要研究结果如下: 1. 青稞苗期进行离体叶片失水率测定结果表明,来自青藏高原的84份青稞材料的WLR在0.086~0.205gh-1g-1DW之间。选择WLR低于0.1gh-1g-1DW和WLR高于0.18gh-1g-1DW的品种各6份,并对苗期分别进行未干旱及干旱12小时的处理。相对含水量检测结果表明,低失水率青稞材料干旱后的具有更高的相对含水量,盆栽缺水试验也显示叶片失水率低的材料耐旱能力强于失水率高的材料。通过水合茚三酮法测定离体叶片游离脯氨酸的含量,结果表明,所有品种未干旱处理时,游离脯氨酸含量差异不大(17.10~25.74 µgg-1FW);干旱12小时后,低失水率的品种游离脯氨酸含量明显增高(32.99~53.45µgg-1FW),高失水率品种的游离脯氨酸含量与干旱前变化不明显(P<0.05)。硫代巴比妥酸法测定离体叶片丙二醛(MDA)含量,结果显示,12份所选对照品种中,丙二醛的含量在0.97~2.74nmolg-1FW,干旱12小时后丙二醛的含量显著上升(1.46~4.74nmolg-1FW),高失水率的6个品种的丙二醛含量在未干旱和干旱处理时都明显高于低WLR品种。本研究结果表明青稞的低失水率、低丙二醛含量、高相对含水量和高脯氨酸含量具相关性(P<0.05)。综上研究,我们认为作物失水率的测定可以作为快速检测作物抗旱性的指标之一,因此,强抗旱品种喜玛拉10号(TR1)、品比14号(TR2)和弱抗旱品种冬青8号(TS1)、QB24 (TS2)被选作抗旱基因克隆和表达分析的研究材料。 2. 高等植物胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins, LEA proteins)与植物耐脱水性密切相关,为了探讨青稞LEA蛋白结构差异性与植物抗旱性的关系,本研究以强抗旱品种(喜玛拉10号、品比14号)和弱抗旱品种(冬青8号、QB24)为材料,利用同源克隆法,通过RT-PCR,分别克隆了与抗旱性密切相关的Dhn6基因和HVA1基因。Dhn6基因序列分析结果表明,强抗旱品种品比14号和弱抗旱品种冬青8号Dhn6基因所克隆到的序列为1026bp,它们之间只有5个碱基的差异;喜玛拉10号和QB24克隆到的序列长963bp。在强弱不同的抗旱品种中有22个核苷酸易突变位点,相应的脱水素氨基酸序列推导结果表明,22个核苷酸突变位点中,仅有8个位点导致相应的氨基酸残基的改变,其余的位点系同义突变,另外,21个富含甘氨酸序列的缺失并没有联系作物抗旱性特征。推测这些同义突变位点的氨基酸残基对维持青稞DHN6蛋白的正常结构和功能起着非常重要的作用,也可能DHN6蛋白对青稞长期适应逆境胁迫和遗传进化的结果。对HVA1基因的序列分析结果表明,冬青8号、QB24、品比14号和喜玛拉10号的目的基因核苷酸序列全长分别为661bp、697bp、694bp和691bp,它们都包含1个完整的开放阅读框。相应的LEA3蛋白氨基酸序列结果表明,11个高度保守的氨基酸残基组成基元重复序列的拷贝数与青稞抗旱性之间没有必然关系,在强抗旱品种(喜玛拉10号、品比14号)中三个共同的氨基酸突变位点Gln32、Arg33和Ala195可能对抗旱蛋白的结构和功能有影响;另外,强抗旱青稞品种LEA3蛋白质中11-氨基酸保守基元序列拷贝数和极性氨基酸占蛋白的比例更高,推测LEA3蛋白中基元序列拷贝数和极性氨基酸占蛋白的比例对该蛋白的结构和功能影响更大。 3. LEA蛋白基因的表达水平的上调与植物的耐脱水性密切相关,我们对强抗旱性材料(喜玛拉10号、品比14号)和弱抗旱材料(冬青8号、QB24)进行干旱处理2 h、4 h、6 h、8 h和10 h的失水变化率进行测定,结果表明弱抗旱品种在2~4小时之间失水率变化最明显,而四个对照品种的失水率在8小时后和24小时的失水率值变化不大。进一步提取青稞苗期进行2 h、4 h、8 h和12 h的干旱处理后的总RNA,通过SYBR Green实时荧光定量RT-PCR技术对青稞脱水素基因(Dhn6、Dhn11和Dhn13)和LEA3蛋白基因(HVA1)的相对表达水平受干旱时间和作物抗旱性的影响进行了检测。研究发现,抗旱性不同的青稞品种随干旱处理的时间延长,Dhn6、Dhn11、Dhn13和HVA1基因的相对表达水平不同。 Dhn6基因的相对表达水平在强抗旱青稞品种干旱8小时后快速上升,但在弱抗旱青稞品种干旱处理12小时后检测到更高表达量;Dhn11基因在对照青稞抗旱品种的表达累积水平随干旱时间的延长持续下降;整个干旱过程中,Dhn13基因的相对表达水平在弱抗旱品种持续上升,在强抗旱品种中干旱处理8小时快速上升并达到最高,干旱12小时后降低。与脱水素基因相比较,强抗旱青稞品种在干旱2小时后HVA1基因的相对表达水平显著升高,相对表达量随干旱处理的时间持续上升,在干旱12小时后达到最高;与之相比较,在整个干旱过程中,弱抗旱品种的相对表达水平显著低于强抗旱品种,在干旱8小时之前弱抗旱品种的相对表达水平变化不明显;在干旱8~12小时后却显著上升。上述结果表明,不同的LEA蛋白在植物耐脱水过程中的干旱表达累积水平不同;干旱不是诱导高等植物Dhn11基因表达的主要因素;植物的抗旱性不同,不同LEA蛋白基因对干旱的反应有差异。推测某些LEA蛋白基因的干旱胁迫早期表达累积程度与植物的抗旱性直接相关;其中,Dhn11基因和Dhn12基因不同的表达模式可能与干旱调控表达顺式作用成分(dehydration responsive element, DRE)的有无或结构上的差异有关。 本研究结果认为,(1)失水率和相对含水量可作为植物抗旱性检测的指标之一;(2) DHN6同义突变位点的氨基酸残基对维持该蛋白的正常结构和功能起着重要作用;(3) 11-氨基酸保守基元序列拷贝数和极性氨基酸的比例对LEA3蛋白结构和功能有重要影响;(4)LEA蛋白表达随着干旱胁迫程度而增加,但Dhn11基因并不受干旱诱导表达;(5)作物的抗旱性不同,LEA蛋白对干旱的累积反应并不相同,干旱早期LEA蛋白的累积程度可能会影响植物的抗旱性。 Drought resistance was a complex trait which involved multiple physiological and biochemical mechanisms and regulation of numerous genes. Because its complex traits, it is difficult to understand the mechanisms of drought resistance in plants. Plants respond to water stress through multiple physiological mechanisms at the cellular, tissue, and whole-plant levels. Tibetan hulless barley, a pure line, is a selfing annual plant that has predominantly penetrated into the Qinghai-Tibetan Plateau and remains stable populations there. The wide ecological range of Tibetan hulless barley differs in water availability, temperature, soil type and vegetation, which makes it possess a high potential of adaptive diversity to abiotic stresses. This adaptive genetic diversity indicates that the potential of Tibetan hulless barley serves as a good source for drought resistance alleles for breeding purposes. 12 contrasting drought-tolerant genotypes were selected to measure relative water content (RWC), maldondialdehyde (MDA) and proline content, based on values of water loss rate (WLR) and repeated drought methods from Tibetan populations of cultivated hulless barley. As a result of the screening, sensitive and tolerant genotypes were identified to clarify relationships between characteristics of LEA2/LEA3 genes sequences and expression and drought-tolerant genotypes, associated with resistance to water deficit. In addition, dynamics water loss rate (DWLR) was measured to observe the changes on diffrential drought-tolerant genotypes. Real-time quantitative RT-PCR was applied to detect relative expression levels of Dhn6, Dhn11, Dhn13 and HVA1 genes in sensitive and tolerant genotypes with 2 h, 4 h, 8h and 12 h of dehydration. In the present study, differential sequences and expression of LEA2/LEA3 genes were explored in Tibetan hulless barley, associated with phenotypically diverse drought-tolerant genotypes. 1. The assessments of WLR and RWC were considered as an alternative measure of plant water statues reflecting the metabolic activity in plants, and the parameters of MDA and proline contents were usually consistent with the resistance to water stress. The values of detached leaf WLR of the tested genotypes were highly variable among 84 genotypes, ranging from 0.086 to 0.205 g/h.g DW. The 12 most contrasting genotypes (6 genotypes with the lowest values of WLR and 6 genotypes with the highest values of WLR) were further validated by measuring RWC, MDA and free-proline contents, which were well watered and dehydrated for 12 h. Results of RWC indicated that the values of 12 contrasting genotypes RWC ranged from 89.94% to 93.38% under condition of well water, without significant differences, but 6 genotypes with lower WLR had higher RWC suffered from 12 h dehydration. The results indicated that lower MDA contents, lower scores of WLR and higher proline contents were associated with drought-tolerant genotypes in hulless barley. Remarkably, proline amounts were increased more notable in 6 tolerant genotypes than 6 sensitive genotypes after excised leaves were dehydrated for 12 h, with control to slight changes under condition of well water. Results of MDA contents showed that six 6 tolerant genotypes had lower MDA contents than the 6 sensitive genotypes under both stressed and non-stressed conditions. As a result of that screening, drought- resistant genotypes (Ximala 10 and Pinbi 14) and drought-sensitive genotypes (Dongqing 8 and QB 24) were chosen for comparing the differential characteristics of LEA2/LEA3 genes and their expression analysis. It was conclusion that measurements of WLR could be considered an alternative index as screening of drought-tolerant genotypes in crops. 2. Late embryogenesis abundant (LEA) proteins were thought to protect against water stress in plants. To explore the relationships between configuration of LEA proteins and phenotypically diverse drought-tolerant genotypes, sequences of LEA genes and their deduced proteins were compared in Tibetan hulless barley. Results of comparing Dhn6 gene in Ximala 10 and QB24 indicated that absence of 63bp was found, except that only 5 mutant nucleotides were found. While 22 mutant sites were taken place in Dhn6 gene between sensitive and tolerant lines, 14 synonymous mutation sites appeared in the contrasting genotypes. The additional/absent polypeptide of 21 polar amino acid residues was not consistent with phenotypically drought-tolerant genotypes in hulless barley. It was deduced that synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein. The sequencing analysis results indicated that each cloned HVA1 gene from four selected genotypes contained an entire open reading frame. The whole sequence of HVA1 gene from Dongqing 8, QB24, Pinbi 14 and Ximala 10 was respectively 661bp, 697bp, 694bp and 691bp. Results of DNA sequence analyses showed that the differences in nucleotides of HVA1 gene in sensitive genotypes were not consistent with that of tolerant genotypes, except for absence of 33 nucleotides from +154 to +186 (numbering from ATG) in QB24. Database searches using deduced amino acid sequences showed a high homology in LEA3 proteins in the selected genotypes. Multiple sequence alignments revealed that LEA3 protein from Dongqing 8 was composed of 8 repeats of an 11 amino acid motif, less the fourth motif than Pinbi 14, Ximala 10 and QB24. Consistent mutant amino acid residues appeared in contrasting genotypes by aligning and comparing the coding sequence region, including Gln32, Arg33 and Ala195 in tolerant genotypes as compared to Asp32, Glu33 and Thr195 (Thr184 in Dongqing 8) in sensitive lines. It was concluded that consistent appearance of Gln32, Arg33 and Ala195 would contributed to functions of LEA3 protein in crops, as well as higher proportion of 11-amino-repeating motifs and polar amino acid residues. 3. Most of the LEA genes are up-regulated by dehydration, salinity, or low temperature, are also induced by application of exogenous ABA, which increases in concentration in plants under various stress conditions and acts as a mobile stress signal. Higher levels of proteins of LEA group 3 accumulated was correlated well with high level of desiccation tolerance in severely dehydrated plant seedlings. Dehydrins (DHNs), members of LEA2 protein, are an immunologically distinct protein family, and Dhn genes expression is associated with plant response to dehydration. Dynamic water loss rate was measured between sensitive genotypes and tolerant genotypes after they were dehydrated for 2 h, 4 h, 6h and 8 h. Detailed measurements of WLR at the early stage of dehydration (2, 4, 6, and 8 h) showed that WLR was stabilizing after 8 h, and there were no significant changes between these values and WLR after 24 h. Drought stress was applied to 10-day-old seedlings by draining the solution from the container for defined dehydration periods. Leaf tissues of the selected genotypes were harvested from control plants (time 0); and after 2, 4, 8, and 12 h of dehydration. Differential expression trends of Dhn6, Dhn11, Dhn13 and HVA1 genes were detected in phenotypically diverse drought-tolerant hulless barleys, related to different time of dehydration. Results of quantitative real-time PCR indicated that relative level of HVA1 expression was always higher in tolerant genotypes, rapidly increasing at the earlier stages (after 2-4 h of dehydration). However, HVA1 expressions of sensitive genotypes had a fast increase from 8 h to 12 h of stress. Significant differences in expression trends of dehydrin genes between tolerant genotypes and sensitive lines were detected, mainly in Dhn6 and Dhn13 gene, depending on the duration of the dehydration stress. The relative expression levels of Dhn6 gene were significantly higher in tolerant genotypes after 8 h dehydration, by control with notable higher expression levels after 12 h water stress in sensitive ones. The relative expression levels of Dhn13 gene tended to ascend during exposure to dehydration in drought-sensitive genotypes. However, fluctuate trends of Dhn13 expression level were detected in drought-resistant lines, including in lower expression levels of 12 h dehydration as compared to 8 h water stress. It was conclusion that (1) diverse LEA proteins would play variable roles in resisting water stress in plants; (2) expression of Dhn11 gene was not induced by dehydrated signals because of the trends of expression descended in contrasting genotypes suffered from water deficit and (3) variable accumulations on LEA proteins would be appear in diverse drought-tolerant genotypes during dehydrations. It is deduced that higher accumulations of Dhn6 and Dhn13 expression in 8 h dehydration are related to diverse drought-tolerant lines in crops. The present results indicated that different dehydrin genes would play variable functional roles in resisting water stress when plants were suffered from water deficit. The authors suggest physiologically different reactions between resistant and sensitive genotypes may be the results of differential expression of drought-resistant genes and related signal genes in plants. In addition, contrarily induced expression of Dhn11 and Dhn12 was related to dehydration responsive element (DRE) in barleys. The present study indicated that (1) measurements of WLR and RWC could be considered as one index of drought-tolerant screenings; (2) synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein, (3) higher proportion of 11-amino-repeating motifs and polar amino acid residues would contribute to functions on LEA3 protein, (4) the longer drought, the more accumulation on LEA proteins, except for Dhn11 gene in crops and (5) differential responses on expression of LEA protein genes would result in physiological traits of drought tolerance in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37–40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another ‘cold-specific’ band at position 52–55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37–40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis doctoral se centra en el estudio de la respuesta molecular de las coníferas mediterráneas al estrés hídrico. Para ello se ha escogido como especie modelo Pinus pinaster Ait., la conífera más abundante en España, y que habita un amplio rango de situaciones ecológicas, especialmente en lo relativo a la disponibilidad de agua. En primer lugar, se ha aplicado un estrés hídrico controlado en cultivo hidropónico y se ha generando una genoteca sustractiva con objeto de identificar los genes inducidos por el estrés, analizando su expresión en raíces, tallos y acículas. A continuación, se ha analizado, la expresión de los genes anteriormente obtenidos así como de otros seleccionados de las bases de datos disponibles, durante una sequía prolongada en tierra, similar a las que las plantas deben afrontar en la naturaleza. Se ha utilizado en este caso, además de P. pinaster, P. pinea, otra conífera mediterránea adaptada a las sequías recurrentes. Este trabajo ha permitido identificar genes candidato expresionales, presumiblemente comunes en la respuesta molecular de las coníferas al déficit hídrico. Se han detectado diferencias notables en la expresión de determinados genes, que podrían ser los responsables de las diferencias exhibidas por ambas especies en el comportamiento frente a la sequía. Entre los genes identificados como inducidos por el estrés hídrico se encuentran varios miembros de la familia de las deshidrinas. Trabajos previos han utilizado deshidrinas como genes candidato; no obstante, la falta de especificidad de ciertos fragmentos y marcadores utilizados, debido a la complejidad estructural de esta familia, resta fiabilidad a algunos de los resultados publicados. Por este motivo, se ha estudiado en detalle esta familia en P. pinaster, se han identificado y caracterizado 8 miembros y se ha analizado su patrón de expresión frente a sequía. Este estudio ha permitido describir por primera vez unos segmentos conservados en la secuencia de aminoácidos de las deshidrinas de pináceas, cuya presencia y número de repeticiones parece estar relacionado con su especificidad. Por último, se han escogido tres genes implicados en distintas fases de la respuesta al estrés hídrico para su análisis exhaustivo: una deshidrina, una nodulina y un factor de transcripción tipo AP2. Se ha caracterizado su estructura exón/intrón y secuenciado su región promotora. Además, se han obtenido líneas transformadas que sobreexpresan estos genes tanto de forma heteróloga, en la especie modelo Arabidopsis thaliana, como en el propio P. pinaster. Este material facilitará la realización de futuros estudios sobre la función y el mecanismo de actuación de estos genes en la respuesta al estrés hídrico. ABSTRACT This thesis focuses in the study of the molecular response to water stress in Mediterranean conifers. For this purpose, P. pinaster was selected as model species. It’s the most abundant conifer in Spain, living in a wide range of ecological conditions, especially regarding water availability. First, we have applied a controlled polyethylene glycol-induced water stress in hydroponic culture and obtained a suppression subtractive hybridization (SSH) library, with the aim of identifying genes induced by water stress, analysing their expression in roots, stems and needles. We have then analysed the expression patterns of the identified genes, together with other genes selected from public databases. This study was conducted throughout a prolonged drought stress in soil, similar to the ones plants have to face in nature. In this case not only P. pinaster was analysed but also P. pinea, another Mediterranean conifer well adapted to recurrent droughts. This work has enabled us to identify of reliable candidate genes, presumably shared with other conifers in the response to water stress. We observed remarkable differences in the expression of some genes, which could be involved in the differential behaviour that these species show in the water stress response. Within the genes induced by water stress, several members of the dehydrin gene family were identified. Due to the structural complexity of the family, certain ambiguities and inconsistencies have been detected in previous works that have used dehydrins as candidate genes. For this reason, we have analysed thoroughly this gene family in P. pinaster, and have identified and characterized eight different members, whose expression patterns during drought have also been assessed. This study has allowed us to identify for the first time novel conserved segments in the amino acids sequences of Pinaceae. The presence and number of repetitions of these segments could be associated with the functional specificity of these proteins. Finally, three genes involved in different steps of the water stress response were selected for an exhaustive analysis: a dehydrin, a nodulin and an AP2 transcription factor. For all of them, the exon/intron structure was established and their promoter region was sequenced. Also, transformed lines were obtained both in Arabidopsis thaliana and in P. pinaster for the constitutive overexpression of these genes. This material will facilitate the development of further studies to investigate the function of these genes during the water stress response

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dehydrins (DHNs, LEA D-11) are plant proteins present during environmental stresses associated with dehydration or low temperatures and during seed maturation. Functions of DHNs have not yet been defined. Earlier, we hypothesized that a ≈35-kDa DHN and membrane properties that reduce electrolyte leakage from seeds confer chilling tolerance during seedling emergence of cowpea (Vigna unguiculata L. Walp.) in an additive and independent manner. Evidence for this hypothesis was not rigorous because it was based on correlations of presence/absence of the DHN and slow electrolyte leakage with chilling tolerance in closely related cowpea lines that have some other genetic differences. Here, we provide more compelling genetic evidence for involvement of the DHN in chilling tolerance of cowpea. We developed near-isogenic lines by backcrossing. We isolated and determined the sequence of a cDNA corresponding to the ≈35-kDa DHN and used gene-specific oligonucleotides derived from it to test the genetic linkage between the DHN presence/absence trait and the DHN structural gene. We tested for association between the DHN presence/absence trait and both low-temperature seed emergence and electrolyte leakage. We show that allelic differences in the Dhn structural gene map to the same position as the DHN protein presence/absence trait and that the presence of the ≈35-kDa DHN is indeed associated with chilling tolerance during seedling emergence, independent of electrolyte leakage effects. Two types of allelic variation in the Dhn gene were identified in the protein-coding region, deletion of one Φ-segment from the DHN-negative lines and two single amino acid substitutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of trials to increase understanding of the summer dormancy trait in Dactylis glomerata was conducted. Autumn-sown reproductive and younger, spring-sown plants of 2 drought-resistant cultivars, contrasting for summer dormancy, were established and then tested in summer 2002 under long drought, drought + midsummer storm, or full irrigation. The autumn-sown reproductive plants of cv. Kasbah were summer dormant under all moisture regimes and exhibited the characteristic traits including growth cessation, rapid herbage senescence, and dehydration of surviving organs (-6.7MPa). Cultivar Kasbah used 8% less soil water over the summer and also began to rehydrate its leaf bases from conserved soil water before the drought broke. The non-dormant cv. Medly grew for 10 days longer under drought and whenever moisture was applied; Medly also responded to the storm with a decline in dehydrin expression in leaf bases, whereas no decline occurred in Kasbah, presumably because it remained dormant and therefore much drier. The irrigated, younger, spring-sown swards of cv. Kasbah had restrained growth and produced only about 25% of the herbage of cv. Medly. Drought reduced activity and growth of young plants of both cultivars, but whereas Medly regrew in response to the storm, cv. Kasbah did not, indicating that dormancy, although only partially expressed after spring sowing, was reinforced by summer drought. A longer drought in 2003 caused a 22% loss of the basal cover in cv. Medly, whereas Kasbah fully maintained its sward and therefore produced a higher post-drought autumn yield. This work confirms summer dormancy as a powerful trait for improving persistence over long, dry summers.