860 resultados para Degree-day


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento de projetos relacionados ao desempenho de diversas culturas tem recebido aperfeiçoamento cada vez maior, incorporado a modelos matemáticos sendo indispensável à utilização de equações cada vez mais consistentes que possibilitem previsão e maior aproximação do comportamento real, diminuindo o erro na obtenção das estimativas. Entre as operações unitárias que demandam maior estudo estão aquelas relacionadas com o crescimento da cultura, caracterizadas pela temperatura ideal para o acréscimo de matéria seca. Pelo amplo uso dos métodos matemáticos na representação, análise e obtenção de estimativas de graus-dia, juntamente com a grande importância que a cultura da cana-de-açúcar tem para a economia brasileira, foi realizada uma avaliação dos modelos matemáticos comumente usados e dos métodos numéricos de integração na estimativa da disponibilidade de graus-dia para essa cultura, na região de Botucatu, Estado de São Paulo. Os modelos de integração, com discretização de 6 em 6 h, apresentaram resultados satisfatórios na estimativa de graus-dia. As metodologias tradicionais apresentaram desempenhos satisfatórios quanto à estimativa de grausdia com base na curva de temperatura horária para cada dia e para os agrupamentos de três, sete, 15 e 30 dias. Pelo método numérico de integração, a região de Botucatu, Estado de São Paulo, apresentou disponibilidade térmica anual média de 1.070,6 GD para a cultura da cana-de-açúcar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 1. Statistical summaries.--v. 2. Basic degree-day data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, So Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The leaf-tying moth Hypocosmia pyrochroma Jones (Lepidoptera: Pyralidae), a native of sub tropical South America, has been introduced as a biological control agent for cat’s claw creeper, Dolichandra unguis-cati (L.) Lohman (Bignoniaceae), in Australia and South Africa. So far there has been no evidence of its field establishment in either country. A narrow temperature tolerance is a potential limiting factor for the establishment of weed biological control insects in novel habitats. In this study, we evaluated the effect of seven constant temperatures (12–40 °C) on the survival and development of H. pyrochroma in temperature-controlled cabinets. Temperatures between 20 and 30 °C were the most favorable for adult survival, oviposition, egg hatching, and larval and pupal development. Adult survival (12–40 °C) and egg development (15–35 °C) showed tolerance for wider temperature ranges than oviposition, and larval and pupal development, which were all negatively affected by both high (>30 °C) and low (<20 °C) temperatures. The degree-day (DD) requirement to complete a generation was estimated as 877 above a threshold temperature of 12 °C. Based on DD requirements and an obligatory winter diapause of pupae from mid-autumn to mid-spring, the potential number of generations (egg to adult) the leaf-tying moth can complete in a year in Australia or South Africa range from one to three. A climate-matching model predicted that the inland regions of both Australia and South Africa are less favorable for H. pyrochroma than the coastal areas. The study suggested that H. pyrochroma is more likely to establish in the coastal areas of Australia where most of the cat’s claw creeper infestations occur, than in South Africa where most of the cat’s claw creeper infestations are inland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article investigates how to use UK probabilistic climate-change projections (UKCP09) in rigorous building energy analysis. Two office buildings (deep plan and shallow plan) are used as case studies to demonstrate the application of UKCP09. Three different methods for reducing the computational demands are explored: statistical reduction (Finkelstein-Schafer [F-S] statistics), simplification using degree-day theory and the use of metamodels. The first method, which is based on an established technique, can be used as reference because it provides the most accurate information. However, it is necessary to automatically choose weather files based on F-S statistic by using computer programming language because thousands of weather files created from UKCP09 weather generator need to be processed. A combination of the second (degree-day theory) and third method (metamodels) requires only a relatively small number of simulation runs, but still provides valuable information to further implement the uncertainty and sensitivity analyses. The article also demonstrates how grid computing can be used to speed up the calculation for many independent EnergyPlus models by harnessing the processing power of idle desktop computers. © 2011 International Building Performance Simulation Association (IBPSA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Testing of the Integrated Nitrogen model for Catchments (INCA) in a wide range of ecosystem types across Europe has shown that the model underestimates N transformation processes to a large extent in northern catchments of Finland and Norway in winter and spring. It is found, and generally assumed, that microbial activity in soils proceeds at low rates at northern latitudes during winter, even at sub-zero temperatures. The INCA model was modified to improve the simulation of N transformation rates in northern catchments, characterised by cold climates and extensive snow accumulation and insulation in winter, by introducing an empirical function to simulate soil temperatures below the seasonal snow pack, and a degree-day model to calculate the depth of the snow pack. The proposed snow-correction factor improved the simulation of soil temperatures at Finnish and Norwegian field sites in winter, although soil temperature was still underestimated during periods with a thin snow cover. Finally, a comparison between the modified INCA version (v. 1.7) and the former version (v. 1.6) was made at the Simojoki river basin in northern Finland and at Dalelva Brook in northern Norway. The new modules did not imply any significant changes in simulated NO3- concentration levels in the streams but improved the timing of simulated higher concentrations. The inclusion of a modified temperature response function and an empirical snow-correction factor improved the flexibility and applicability of the model for climate effect studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Six land surface models and five global hydrological models participate in a model intercomparison project (WaterMIP), which for the first time compares simulation results of these different classes of models in a consistent way. In this paper the simulation setup is described and aspects of the multi-model global terrestrial water balance are presented. All models were run at 0.5 degree spatial resolution for the global land areas for a 15-year period (1985-1999) using a newly-developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm year-1 (60,000 to 85,000 km3 year-1) and simulated runoff ranges from 290 to 457 mm year-1 (42,000 to 66,000 km3 year-1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically-based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between model are major sources of uncertainty. Climate change impact studies thus need to use not only multiple climate models, but also some other measure of uncertainty, (e.g. multiple impact models).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To achieve CO2 emissions reductions the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This paper presents the results of an analysis based on weekly head demand data for more than 200 individual flats. The data is collected from recently built residential development connected to a district heating network. A methodology for separating out the domestic hot water use (DHW) and space heating demand (SH) has been developed and compares measured values to the demand calculated using SAP 2005 and 2009 methodologies. The analysis shows also the variance in DHW and SH consumption between both size of the flats and tenure (privately owned or housing association). Evaluation of the space heating consumption includes also an estimation of the heating degree day (HDD) base temperature for each block of flats and its comparison to the average base temperature calculated using the SAP 2005 methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho foi realizado com o objetivo de conhecer a influência que algumas variáveis meteorológicas exercem na razão entre sólidos solúveis totais e acidez total titulável (ratio) e no índice tecnológico dos frutos da primeira florada das laranjeiras-'Natal' e 'Valência', na região de Bebedouro-SP, mediante a utilização de métodos estatísticos de regressão. Foram utilizados dados de amostragens de rotina para o processamento industrial durante 4 anos, os quais permitiram desenvolver equações de regressão linear e quadrática, com a soma térmica (graus-dia) como variável independente, e de regressão múltipla, utilizando graus-dia e chuva como variáveis independentes. A equação de melhor ajuste para o índice tecnológico foi a quadrática, enquanto para o ratio a equação linear apresentou o melhor ajuste. A temperatura do ar, representada por graus-dia, foi a variável que exerceu maior influência nos indicadores de qualidade dos frutos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo visou determinar as exigências térmicas do pulgão Myzus persicae (Sulzer), calcular tabelas de vida de fertilidade, e prever a ocorrência de adultos no campo, por meio de modelo de graus-dia. Os pulgões foram mantidos individualmente em gaiolas fixadas em folhas de couve, Brassica oleracea L. var. acephala DC, em laboratório, às temperaturas de 15, 20, 23, 25 e 30ºC. O limite térmico inferior de desenvolvimento (Tb) e a constante térmica (K) foram 2,2ºC e 165,6 graus-dia, respectivamente. O modelo de graus-dia previu a ocorrência de adultos de M. persicae para 0 a1 dia antes da data em que eles foram observados no campo. Os parâmetros das tabelas de vida estimados na escala de tempo em graus-dia evidenciaram que as temperaturas de 23°C e 25°C foram as que proporcionaram as melhores condições térmicas para o crescimento populacional de M. persicae. Nessas temperaturas observou-se o maior valor da capacidade inata de aumentar em número (r m = 0,012), o menor valor da duração média da geração (T = 303,8 graus-dia e 272 graus-dia, respectivamente) e o menor tempo necessário para a população duplicar em número de indivíduos (TD = 57,8 graus-dia).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento (ovo-adulto) da mosca-branca, Bemisia tabaci (Genn.) biótipo B (=Bemisia argentifolii, Bellows & Perring), foi estudado em condições de campo e em câmaras climatizadas, reguladas nas temperaturas constantes de 15, 20, 25, 30 e 35±1ºC, usando soja, Glycine max (L.) Merrill, cultivar Msoy 8001, como planta hospedeira. O limite térmico inferior de desenvolvimento (Tb) e a constante térmica (K) das fases de ovo, ninfa e ciclo biológico (ovo-adulto) foram 11,1ºC / 98,8 graus-dia, 6,8ºC / 383,8 graus-dia e 8,3ºC / 472,6 graus-dia, respectivamente. Nas temperaturas extremas (15ºC e 35ºC), a viabilidade dos insetos mostrou-se menor. No campo, a emergência de 70% dos adultos ocorreu depois de terem sido acumulados 413,2 graus-dia. O modelo de graus-dia utilizado mostrou-se adequado para a previsão de ocorrência de adultos de Bemisia tabaci biótipo B no campo, podendo também ser utilizado para determinação do número de gerações nas diferentes regiões do País.