808 resultados para Deformation Twins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries provide sequential twining mechanism, which results in fivefold deformation twins. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation twins are often observed to meet each other to form multi-fold twins in nanostructured face-centered cubic (fcc) metals.Here we propose two types of mechanism for the nucleation and growth of four different single and multiple twins. These mechanisms provide continuous generation of twinning partials for the growth of the twins after ucleation. A relatively high stress or high strain rate is needed to activate these mechanisms, making them more prevalent in nanocrystalline materials than in their coarse-grained counterparts.Experimental observations that support the proposed mechanisms are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation twinning has been observed in room-temperature rolled nanocrystalline Ni. The growth of the deformation twins via the emission of partial dislocations from a grain boundary has been examined in detail. Partial dislocations on neighboring slip planes may migrate for different distances and then remain in the grain interior, leading to the formation of a steplike twin boundary TB . With continued twin growth, the TBs become gradually distorted and lose their coherent character due to accumulated high stresses. Moreover, we propose that microtwins may form near such TBs due to the emission of partial dislocations from the TB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deformation twins and stacking faults have been observed in nanocrystal line Ni, for the first time under uniaxial tensile test conditions. These partial dislocation mediated deformation mechanisms are enhanced at cryogenic test temperatures. Our observations highlight the effects of deformation conditions, temperature in particular, on deformation mechanisms in nanograins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deformation twins have been observed in nanocrystalline (nc) fcc metals with medium-to-high stacking fault energies such as aluminum, copper, and nickel. These metals in their coarse-grained states rarely deform by twining at room temperature and low strain rates. Several twinning mechanisms have been reported that are unique to nc metals. This paper reviews experimental evidences on deformation twinning and partial dislocation. emissions from grain boundaries, twinning mechanisms, and twins with zero-macro-strain. Factors that affect the twinning propensity and recent analytical models on the critical grain sizes for twinning are also discussed. The current issues on deformation twinning in nanocrystalline metals are listed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (similar to 36 GPa) and indentation fracture toughness (similar to 12 MPa m(1/2)). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in alpha-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s(-1). The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most deformation twins in nanocrystalline face-centered cubic fcc metals have been observed to form from grain boundaries. The growth of such twins requires the emission of Shockley partials from the grain boundary on successive slip planes. However, it is statistically improbable for a partial to exist on every slip plane. Here we propose a dislocation reaction and cross-slip mechanism on the grain boundary that would supply a partial on every successive slip plane for twin growth.This mechanism can also produce a twin with macrostrain smaller than that caused by a conventional twin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the molecular dynamics simulation, plastic deformation mechanisms associated with the zigzag stress curves in perfect and surface defected copper nanowires under uniaxial tension are studied. In our previous study, it has found that the surface defect exerts larger influence than the centro-plane defect, and the 45o surface defect appears as the most influential surface defect. Hence, in this paper, the nanowire with a 45o surface defect is chosen to investigate the defect’s effect to the plastic deformation mechanism of nanowires. We find that during the plastic deformation of both perfect and defected nanowires, decrease regions of the stress curve are accompanied with stacking faults generation and migration activities, but during stress increase, the structure of the nanowire appears almost unchanged. We also observe that surface defects have obvious influence on the nanowire’s plastic deformation mechanisms. In particular, only two sets of slip planes are found to be active and twins are also observed in the defected nanowire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.