950 resultados para Defensive Secretions
Resumo:
Natural selection has caused prey species to evolve distinct defensive mechanisms. One of such mechanisms was the evolution of noxious or distasteful chemicals, which have appeared independently in a number of vertebrates and invertebrates. In detailed analyses of arthropod behaviour, scent gland secretions have consistently been shown to be responsible for repelling specific predators. Because using such chemicals is costly, animals with alternative cheaper defences are expected not to release such secretions when alternative options exist. In this study, we sought to determine the defensive mechanisms of the harvestman Discocyrtus invalidus, a heavy bodied species that bears a pair of repugnatorial glands. The spider Enoploctenus cyclothorax was used as the predator, and the cricket Gryllus sp. was used as a control. In a first set of experiments, the harvestmen were preyed upon significantly less than the crickets. In two other experiments, we found that harvestmen did not use their scent gland secretions to deter the predator. Moreover, results of a fourth experiment revealed that these spiders are not repelled by defensive secretions. Discocyrtus invalidus has a thick cuticle on the entire body: scanning electron micrographs revealed that only the mouth, the articulations of appendages and the tips of the legs are not covered by a hard integument. In a fifth experiment, we found that these spiders had difficulty piercing the harvestmen body. This is the first experimental evidence that a chemically defended arachnid does not use its scent gland secretions to repel a much larger predator but instead relies on its heavily built body. (c) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The arachnids of the order Opiliones (harvestmen) produce substances used in defense. In the present paper, we analyzed 22 species of Gonyleptidae to explore the use of defensive substances in taxonomy and evolutionary biology. Thirty-seven different compounds were detected, 18 of which were preliminarily identified. These compounds were mapped onto a phylogenetic tree showing the relationships within the Gonyleptidae. Data from Cosmetidae were used as an outgroup. Five ketones and six alkyl phenols were reported for the first time in harvestmen. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The defensive, secretions, of five neotropical) species of harvestmen, (Opiliones: Gonyleptidae) from the Brazilian Atlantic Forest were analyzed and chemically characterized by GC-MS and NMR Methods. Three of the species, Cobania picea, Roweria virescens, and Serracutisoma proximum, secrete a mixture of 2,3-dimethyl-1,4-benzoquinone and 2-ethyl-3methyl-1,4,4-benzoquinone. The secretions produced,by the Other two species Iporangaia pustulosa and Neosadocus maximus, contain 1-hepten-3-one, 5-methyl-1-hexen-3-one, and 1-(6-butyl-3,4-dihydro-2H-pyran-2-yl)pentanone. (1)as major components, as well as,2,3-dimethyl-1.,4-benzoquinone and 2-ethyl-3 methyl-1,4-benzoquinone as minor,constituents. The. dihydropyran 1-(6-butyl-3,4-dihydro-2H-pyran-2-yl)pentanone (1) is a new natural product, composed of two 1-hepten-3-one, subunits formally linked in a hetero-Diels-Alder reaction. The natural product was proven to be racemic, and its biogenetic origin is discussed.
Resumo:
is a predominant characteristic, conditioned by the presence of castes with different morphology, ontogeny, and development. The soldier caste is unique among social insects and it is responsible for colony defense. Soldiers belonging to the Nasutitermitinae subfamily are very peculiar, since they may be polymorphic and present a nasus in addition to either developed or vestigial mandibles. The defensive secretions of soldiers of the neotropical Nasutitermitinae have been the aim of several chemical studies, but few data exist concerning the anatomy and histology of the exocrine glands. This article presents a comparative study on the anatomy of the frontal gland of soldiers of several Nasutitermitinae species: Syntermes dirus (Burmeister), Syntermes nanus (Constantino), Constrictotermes cyphergaster (Silvestri), Nasutitermes corniger (Motschulsky) and Velocitermes heteropterus (Silvestri), with emphasis on the ultramorphology and ultrastructure of the frontal tube.
Resumo:
Constrictotermes rupestris, new species, is described from central Brazil, with illustrations of the imago, soldier, worker head, worker mandibles, worker mandibular gland, and nest. The new species lives in a dry forest, on rocky terrain, building its nest always on rocks. In the colonies examined, all castes showed a striking reddish coloration due to something accumulated in the fat tissues. Inquilinitermes microcerus was present in most examined nests. The worker of C. rupestris has an enlarged mandibular gland. Workers also show an aggressive behavior, which suggests that the mandibular glands may produce defensive secretions.
Resumo:
Spitting spiders (Scytodidae) have a distinct predatory strategy in which they eject a sticky secretion from their cheliceral fangs to immobilize prey. This behavior could potentially allow the spider not only to avoid defensive secretions but also to bite specific vulnerable spots of a potential prey such as a harvestman. We used an ethogram, a fluxogram and an experiment to analyze the interaction between the harvestman Discocyrtus invalidus Piza 1938 (Arachnida: Opiliones) and the syntopic spider Scytodes globula (Nicolet 1849) (Arachnida: Araneae). These spiders, while readily taking crickets as prey, seldom spat at and never bit the harvestmen, which apparently did not exude repugnatorial secretions. We therefore tested, by clogging the glands and using appropriate controls, whether non-visible amounts of secretions could cause the rejection, but the harvestmen were still refused. This is the first detailed and quantified description of an interaction between a spitting spider and a harvestman. The general conclusions are that S. globula avoids preying on D. invalidus, S. globula behaves differently when attacking harvestmen and crickets and the scent gland secretions of D. invalidus do not play a direct role in this predator-prey interaction.
Resumo:
Combination of molecular phylogenetic analyses of Chrysomelina beetles and chemical data of their defensive secretions indicate that two lineages independently developed, from an ancestral autogenous metabolism, an energetically efficient strategy that made the insect tightly dependent on the chemistry of the host plant. However, a lineage (the interrupta group) escaped this subordination through the development of a yet more derived mixed metabolism potentially compatible with a large number of new host-plant associations. Hence, these analyses on leaf beetles document a mechanism that can explain why high levels of specialization do not necessarily lead to “evolutionary dead ends.”
Resumo:
Defensive behavior associated with secretions from the prosternal paired glands of the larvae of Heliconius erato phyllis Fabricius (Lepidoptera, Nymphalidae). Our work presents for the first time, the defensive behavior associated with the release of the product of the prosternal paired glands of the larva of Heliconius erato phyllis Fabricius, 1775 (Lepidoptera, Nymphalidae, Heliconiinae). The prosternal glands were first described for larvae of H. erato phyllis. They are formed by two types of glandular structures: the impair gland and the paired glands. The prosternal glands are located within the conical integumentary sac, which in turn is situated on the individual's prosternum. The main goal of this study is to analyze the existence of any secretion from the prosternal paired glands, and check the action mode of this secretion. The methodology used for chemical analysis of the glands included the aeration and, analysis in gas chromatography and gas chromatography-mass spectrometry. The results show that the prosternal glands do not produce volatiles. Bioassays were conducted with simulated and natural attacks and revealed that the prosternal paired glands produce secretions of defense together with silk produced by labials glands as a defense strategy, described for the first time, against ants. The strategy consists in wrapping the ant with silk threads, the entire wrapped object moved to the end of the body, with the aid of the legs and prolegs, and possibly fixed in a nearby place. Evidence for the existence of a conical integumentary sac in larvae of other species and families of Lepidoptera allows us to propose the possibility of occurrence of prosternal paired glands with defensive function in these other groups as well.
Resumo:
Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm.
Resumo:
Like ants and termites some species of stingless bees (Meliponini), which are very important pollinators in the tropics, use pheromone trails to communicate the location of a food source. We present data on the communicative role of mandibular gland secretions of Meliponini that resolve a recent controversy about their importance in the laying of such trails. Volatile constituents of the mandibular glands have been erroneously thought both to elicit aggressive/defensive behaviour and to signal food source location. We studied Trigona spinipes and Scaptotrigona aff. depilis (`postica`), two sympatric species to which this hypothesis was applied. Using extracts of carefully dissected glands instead of crude cephalic extracts we analysed the substances contained in the mandibular glands of worker bees. Major components of the extracts were 2-heptanol (both species), nonanal (T. spinipes), benzaldehyde and 2-tridecanone (S. aff. depilis). The effect of mandibular gland extracts and of individual components thereof on the behaviour of worker bees near their nest and at highly profitable food sources was consistent. Independent of the amount of mandibular gland extract applied, the bees overwhelmingly reacted with defensive behaviour and were never attracted to feeders scented with mandibular gland extract or any of the synthetic chemicals tested. Both bee species are capable of using mandibular gland secretions for intra-and interspecific communication of defence and aggression and share 2-heptanol as a major pheromone compound. While confirming the role of the mandibular glands in nest defence, our experiments provide strong evidence against their role in food source signalling.
Resumo:
Human bocavirus (HBoV) is a parvovirus recently identified in association with acute respiratory infections (ARI). Despite its worldwide occurrence, little is known on the pathogenesis of HBoV infections. In addition, few systematic studies of HBoV in ARI have been conducted in Latin America. Therefore, in order to test whether active viral replication of human bocavirus is associated with respiratory diseases and to understand the clinical impact of this virus in patients with these diseases, we performed a 3-year retrospective hospital-based study of HBoV in outpatients and inpatients with symptoms of Acute Respiratory Infections (ARI) in Brazil. Nasopharyngeal aspirates (NPAs) from 1015 patients with respiratory symptoms were tested for HBoV DNA by PCR. All samples positive for HBoV were tested by PCR for all other respiratory viruses, had HBoV viral loads determined by quantitative real time PCR and, when possible, were tested by RT-PCR for HBoV VP1 mRNA, as evidence of active viral replication. HBoV was detected in 4.8% of patients, with annual rates of 10.0%, 3.0% and 3.0% in 2005, 2006 and 2007, respectively. The range of respiratory symptoms was similar between HBoV-positive and HBoV-negative ARI patients. However, a higher rate of diarrhea was observed in HBoV-positive patients. High HBoV viral loads (> 10(8) copies/mL) and diarrhea were significantly more frequent in patients with exclusive infection by HBoV and in patients with detection of HBoV VP1 mRNA than in patients with viral co-infection, detected in 72.9% of patients with HBoV. In summary, our data demonstrated that active HBoV replication was detected in a small percentage of patients with ARI and was correlated with concurrent diarrhea and lack of other viral co-infections.
Resumo:
Objective: To determine whether coinfection with sexually transmitted diseases (STD) increases HIV shedding in genital-tract secretions, and whether STD treatment reduces this shedding. Design: Systematic review and data synthesis of cross-sectional and cohort studies meeting. predefined quality criteria. Main Outcome Measures: Proportion of patients with and without a STD who had detectable HIV in genital secretions, HIV toad in genital secretions, or change following STD treatment. Results: Of 48 identified studies, three cross-sectional and three cohort studies were included. HIV was detected significantly more frequently in participants infected with Neisseria gonorrhoeae (125 of 309 participants, 41%) than in those without N gonorrhoeae infection (311 of 988 participants, 32%; P = 0.004). HIV was not significantly more frequently detected in persons infected with Chlamydia trachomatis (28 of 67 participants, 42%) than in those without C trachomatis infection (375 of 1149 participants, 33%; P = 0.13). Median HIV load reported in only one study was greater in men with urethritis (12.4 x 10(4) versus 1.51 x 10(4) copies/ml; P = 0.04). In the only cohort study in which this could be fully assessed, treatment of women with any STD reduced the proportion of those with detectable HIV from 39% to 29% (P = 0.05), whereas this proportion remained stable among controls (15-17%), A second cohort study reported fully on HIV load; among men with urethritis, viral load fell from 12.4 to 4.12 x 10(4) copies/ml 2 weeks posttreatment, whereas viral load remained stable in those without urethritis. Conclusion: Few high-quality studies were found. HIV is detected moderately more frequently in genital secretions of men and women with a STD, and HIV load is substantially increased among men with urethritis, Successful STD treatment reduces both of these parameters, but not to control levels. More high-quality studies are needed to explore this important relationship further.
Resumo:
Although prosimians are greatly olfaction-oriented, little is known about the specifics of how they use scent to communicate. In this preliminary study we attempted to delineate intra- and interspecific differences among the anogenital gland secretions of two lemur species (Lemur catta and Propithecus verreauxi coquereli) using gas chromatography-mass spectrometry (GC-MS). The results indicate that the two species are discernible through scent. Furthermore, we were able to identify reproductive status using this technique. The anogenital secretions of the different sexes in L. catta, though perhaps not P. v. coquereli, are chemically distinguishable. Given this information, it appears that at least some lemur species can use scent marks to determine species, sex, and reproductive status. (C) 2004 Wiley-Liss, Inc.
Resumo:
wPrey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: We evaluated whether vaginal concentrations of hyaluronan were altered in women with recurrent vulvovaginal candidiasis (RVVC). STUDY DESIGN: Lavage samples from 17 women with acute RVVC, 27 women who were receiving a maintenance antifungal regimen, and 24 control women were tested for hyaluronan and interleukin (IL)-6, IL-12, and IL-23 by enzyme-linked immunosorbent assay. RESULTS: Median vaginal hyaluronan concentrations were 33.8 ng/mL (range, 21.6-66.3 ng/mL) in women with acute RVVC, 15.0 ng/mL (range, 11.2-50.6 ng/mL) in women who were receiving maintenance therapy, and 4.2 ng/mL (range, 3.6-12.0 ng/mL) in control subjects (P <= .02). The vaginal hyaluronan concentration was 27.4 ng/mL (range, 15.4-37.7 ng/mL) when Candida was detected by microscopy and 9.5 ng/mL (range, 7.7-14.6 ng/mL) in microscopy-negative cases (P = .0354). Elevated hyaluronan levels were associated with itching plus burning (40.7 ng/mL) or itching plus discharge (42.1 ng/mL), as opposed to itching only (6.2 ng/mL; P = .0152). Hyaluronan and IL-6 levels were correlated (P = .0009). CONCLUSION: Hyaluronan release is a component of the host response to a candidal infection and may contribute to symptoms.