997 resultados para Deep-drawing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine grained materials produced by severe plastic deformation methods possess attractive mechanical properties such as high strength compared with traditional coarse grained counterparts and reasonable ductility. Between existing severe plastic deformation methods the Equal Channel Angular Pressing is the most promising for future industrial applications and can produce a variety of ultrafine grained microstructures in materials depending on route, temperature and number of passes during processing. Driven by a rising trend of miniaturisation of parts these materials are promising candidates for microforming processes. Considering that bi-axial deformation of sheet (foil) is the major operation in microforming, the investigation of the influence of the number of ECAP passes on the bi-axial ductility in micro deep drawing test has been examined by experiments and FE simulation in this study. The experiments have showed that high force was required for drawing of the samples processed by ECAP compare to coarse grained materials. The limit drawing ratio of ultrafine grained samples was in the range of 1.9–2.0 with ECAP pass number changing from 1 to 16, while a higher value of 2.2 was obtained for coarse grained copper. However, the notable decrease in tensile ductility with increase in strength was not as pronounced for bi-axial ductility. The FE simulation using standard isotropic hardening model and von Mises yielding criterion confirmed these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical modelling of deep drawing process is of value in preliminary process design to illustrate the influence of major variables including friction and strain hardening on punch loads, cup dimensions and process limits. In this study, analytical models including theoretical solution and a series of finite element models are developed to account for the influences of process parameters including friction coefficient, tooling geometry and material properties on deep drawing of metal cups. The accuracy of both the theoretical and finite element solutions is satisfactory compared with those from experimental work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi solid thin strip continuous casting process was used to obtain 50%wt Pb/50%wtSn strip by single and twin roll processing at speed of 15 m/min. A 50%wt Pb/50%wtSn plate ingot was also cast for rolling conventionally into strips of 1.4 mm thickness and 45 mm width for comparison with those achieved non-conventionally. This hypoeutectic alloy has a solidification interval and fusion temperature of approximately 31 degrees C and 215 degrees C respectively. The casting alloy temperature was around 280 degrees C as measured by a type K immersion thermocouple prior to pouring into a tundish designed to maintain a constant melt flow on the cooling slope during semi solid material production. A nozzle with a weir ensures that the semi solid material is dragged smoothly by the lower roll, producing strip with minimum contamination of slag/oxide. The temperatures of the cooling slope and the lower roll were also monitored using K type thermocouples. The coiled semi solid strip, which has a thickness of 1.5 mm and 45 mm width, was rolled conventionally in order to obtain 1.2 mm thick strip. The coiled thixorolled strip had a thickness of 1.2 mm and achieved practically the same width as the conventional strips. Blanks of 40 mm diameter were cut from the strips in a mechanical press, ready for deep drawing and ironing for mechanical characterization. All the strips achieved from non-conventional processing had the same mechanical performance as those achieved conventionally. The limiting drawing ratio (LDR) achieved was approximately 2.0 for all strips. Microscopy examination was made in order to observe phase segregation during processing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Experimental studies into the effect of blank thickness on the deep drawing response of the coarse-grained and ultrafine-grained copper demonstrated the occurrence of a size effect: the dependence of the maximum load and the limit drawing ratio on the blank thickness in sub-millimetre range. A dislocation based constitutive model taking into account the thickness effects was used for numerical simulations of the process. It was demonstrated that the occurrence of the blank thickness effect is governed by the ratio of the blank thickness t to the grain size D of the material. Critical values of the t/. D ratio below which the size effect comes to bearing were determined. The obtained results can be seen as a demonstration of more general suitability of the model developed for predicting microforming operations with full account of the specimen or work-piece dimensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From St15 micro-carbon deep drawing steel sheets, two sets of samples with (r) over bar variant and Deltar constant, and (r) over bar constant and Deltar variant, were selected to carry out texture measurement and ODF analysis. A description of the texture characteristics and an investigation on the effect of the main textures on the (r) over bar and Deltar values were given. The results show that in the tested steel sheets no desired gamma < 111 > parallel to ND orientation line appears but gamma' orientation line located at <()over bar>=0-90 degrees, theta =19 degrees and phi =45 degrees, and L orientation line located around gamma < 111 > parallel to ND orientation line which spirally rotates from Psi =0 degrees, theta =54.7 degrees and phi =62.7 degrees to Psi =90 degrees, theta =40 degrees and phi =45 degrees occur. Among them, the L orientation line has a main influence on the (r) over bar value and the stronger the texture density, the higher the (r) over bar value is, but is somewhat detrimental to the Deltar value; at the same time, the gamma' orientation line has a major effect on the Deltar value in an opposite way, but is somewhat deteriorative to the (r) over bar value. A strong L orientation line superposed by a relatively strong gamma' orientation line may produce fine (r) over bar and Deltar values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wear is the principal cause of tool failure in most sheet metal forming processes. It is well known that the contact pressure between the blank and the tool has a large influence on the wear of the tool, and hence the tool life. This investigation utilises the finite element method to analyse the contact pressure distribution over the die radius for a particular deep drawing process. Furthermore, the evolution of the predicted contact pressure distribution throughout the entire stroke of the punch is also examined. It was found that the majority of the process shows a steady state pressure distribution, with two characteristic peaks over the die radius, at the beginning and end of the sheet contact area. Interestingly, the initial transient contact pressure response showed extremely high localised peak pressures; more than twice that of the steady state peaks. Results are compared to wear reported in the literature, during similar experimental deep drawing processes. Finally, the significance and effect of the results on wear and wear-testing techniques are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis explores the elastic behaviour of the mechanical double action press and draw die system commonly used to draw sheet metal components in the automotive industry. High process variability in production and excessive time spent in die try-out are significant problems in automotive stamping. It has previously been suggested that the elastic behaviour of the system may contribute to these problems. However, the mechanical principles that cause the press system to affect the forming process have not been documented in detail. Due to a poor understanding of these problems in industry, the elasticity of the press and tools is currently not considered during the die design. The aim of this work was to explore the physical principles of press system elasticity and determine the extent to which it contributes to problems in try-out and production. On the basis of this analysis methods were developed for controlling or accounting for problems during the design process. The application of frictional restraining force to the edges of the blank during forming depends on the distribution and magnitude of the clamping force between the binders surfaces of the draw die. This is an important control parameter for the deep drawing process. It has been demonstrated in this work that the elasticity of the press and draw die can affect clamping force in two ways. The response of the press system, to the forces produced in the press during forming, causes the magnitude of clamping force to change during the stroke. This was demonstrated using measured data from a production press. A simple linear elastic model of the press system was developed to illustrate a definite link between the measured force variation and the elasticity of the press and tools. The simple model was extended into a finite element model of the complete press system, which was used to control a forming simulation. It was demonstrated that stiffness variation within the system could influence the final strains in a drawn part. At the conclusion of this investigation a method is proposed for assessing the sensitivity of a part to clamping force variation in the press during die design. A means of reducing variation in the press through the addition of a simple linear spring element is also discussed. The second part of the work assessed the influence of tool structure on the distribution of frictional restraining forces to the blank. A forming simulation showed that tool stiffness affects the distribution of clamping pressure between the binders. This was also shown to affect the final strains in a drawn part. However, the most significant influence on restraining force was the tendency of the blank to increase in thickness between the binders during forming. Using a finite element approximation of the try-out process it was shown that the structure of the tool would also contribute to the problems currently experienced in try-out where uneven contact pressure distributions are addressed by manually adjusting the tool surfaces. Finally a generalised approach to designing draw die structures was developed. Simple analysis methods were combined with finite element based topology optimisation techniques to develop a set of basic design guidelines. The aim of the guidelines was to produce a structure with uniform stiffness response to a pressure applied at the binder surface. The work concludes with a recommendation for introducing the methods developed in this thesis into the standard production process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hollow structures made of Advanced High Strength Steel (AHSS) are increasingly used in the automobile industry for crash and structural components. Generally high pressure hydroforming is used to form these tabular parts, which is a costly manufacturing process due to the high pressure equipment and large tonnage presses required. A new process termed low pressure hydroforming, where a pressurized tube is crushed between two dies, represents a more cost effective alternative due to the lower pressures and die closing forces required.

In this study the low pressure tube hydroforming of one simple and two different complex hollow shapes is investigated. The complexities of the pat1S compared to simple shapes are critically studied and the die filling conditions are investigated and discussed. FUl1hennore the thickness distributions over the circumference of the part during forming are analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In steels with TRIP-effect, a phase transformation from the retained-austenite to martensite occurs during forming, and it significantly affects hardening behaviours. Such an effect is sensitive to the amount of strain as well as the temperature variation. For materials with a strong TRIP-effect, new forming techniques are needed to develop that can lead to lighter and stronger components in automotive industry. This paper presents a coupled thermo-mechanical finite element modelling and simulation of a warm deep drawing of austenitic stainless steel (including a TRIP-effect) using LS-DYNA and temperature effect on forming process of such materials is investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical solutions, finite element models, and experimental techniques are developed for three major sheet metal forming operations: bending (pure bending and cyclic bending), die bending, and deep drawing. These have been applied to two different commercial quality cold-rolled steels, one stainless steel, and one magnesium alloy.