983 resultados para Decision variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we allow the firms to choose their prices and quantities simultaneously. Quantities are produced in advance and their common sales price is determined by the market. Firms offer their “residual capacities” at their announced prices and the corresponding demand will be served to order. If all firms have small capacities, we obtain the Bertrand solution; while if at least one firm has a sufficiently large capacity, the Cournot outcome and a model of price leadership could emerge.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reports a pilot study of the relative importance of import decision variables as rated by Australian managers. A systematic sample qi 104 Australian managers representing different companies participated in the study. Australian importers rated product quality as the most important variable when importing products from overseas followed by long-term suppliers' dependability, product style/feature, price, and timely delivery. Australian managers who import consumer products find the domestic import duties and tariffs to be more important than did those who import industrial products. Larger volume importers regard the product brand name reputation to be more important than did those who import smaller volumes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data mining, and in particular decision trees have been used in different fields: engineering, medicine, banking and finance, etc., to analyze a target variable through decision variables. The following article examines the use of the decision trees algorithm as a tool in territorial logistic planning. The decision tree built has estimated population density indexes for territorial units with similar logistics characteristics in a concise and practical way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMO - Caracterização do problema: A inadequação e ineficácia do sistema de financiamento ―por diária‖ dos cuidados de reabilitação resultaram na necessidade de criação de sistemas de classificação de doentes de reabilitação em regime de internamento, em muitos países. Também em Portugal é necessário implementar um sistema de financiamento, baseado num sistema de classificação de doentes, ajustado pela complexidade e necessidade de cuidados destes doentes. Objectivos: Caracterização dos cuidados de reabilitação em Portugal, e do actual sistema de financiamento destes doentes; realização de uma revisão de literatura dos sistemas de classificação de doentes de reabilitação já existentes, de modo a compreender quais as variáveis de agrupamento utilizadas e qual a capacidade de previsão dos custos destes mesmos sistemas; perceber a importância da implementação de um dos sistemas de classificação em Portugal, e quais as suas vantagens. Metodologia: Da revisão de literatura efectuada, foram encontrados quatro sistemas de classificação de doentes implementados e/ou em vias de serem implementados como base para um sistema de financiamento, nos EUA, Austrália e Canadá. Foi efectuada uma extensa caracterização e análise crítica dos mesmos. Conclusões: Podemos concluir, que dos poucos sistemas de classificação de doentes de reabilitação existentes, optou-se pelo estudo de uma possível adopção do sistema norte-americano para a realidade portuguesa, por ser o único sistema de classificação já utilizado para fins de financiamento para todos os doentes de reabilitação desde 2002, o que inclui mais variáveis de decisão na classificação dos doentes, e o que permite a maior previsão dos custos dos doentes em termos percentuais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The threats caused by global warming motivate different stake holders to deal with and control them. This Master's thesis focuses on analyzing carbon trade permits in optimization framework. The studied model determines optimal emission and uncertainty levels which minimize the total cost. Research questions are formulated and answered by using different optimization tools. The model is developed and calibrated by using available consistent data in the area of carbon emission technology and control. Data and some basic modeling assumptions were extracted from reports and existing literatures. The data collected from the countries in the Kyoto treaty are used to estimate the cost functions. Theory and methods of constrained optimization are briefly presented. A two-level optimization problem (individual and between the parties) is analyzed by using several optimization methods. The combined cost optimization between the parties leads into multivariate model and calls for advanced techniques. Lagrangian, Sequential Quadratic Programming and Differential Evolution (DE) algorithm are referred to. The role of inherent measurement uncertainty in the monitoring of emissions is discussed. We briefly investigate an approach where emission uncertainty would be described in stochastic framework. MATLAB software has been used to provide visualizations including the relationship between decision variables and objective function values. Interpretations in the context of carbon trading were briefly presented. Suggestions for future work are given in stochastic modeling, emission trading and coupled analysis of energy prices and carbon permits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A procedure for compositional characterization of a microalgae oil is presented and applied to investigate a microalgae based biodiesel production process through process simulation. The methodology consists of: proposing a set of triacylglycerides (TAG) present in the oil; assuming an initial TAG composition and simulating the transesterification reaction (UNISIM Design, Honeywell) to obtain FAME characterization values (methyl ester composition); evaluating deviations of experimental from calculated values; minimizing the sum of squared deviations by a non-linear optimization algorithm, with TAG molar fractions as decision variables. Biodiesel from the characterized oil is compared to a rapeseed based biodiesel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many real-world optimization problems contain multiple (often conflicting) goals to be optimized concurrently, commonly referred to as multi-objective problems (MOPs). Over the past few decades, a plethora of multi-objective algorithms have been proposed, often tested on MOPs possessing two or three objectives. Unfortunately, when tasked with solving MOPs with four or more objectives, referred to as many-objective problems (MaOPs), a large majority of optimizers experience significant performance degradation. The downfall of these optimizers is that simultaneously maintaining a well-spread set of solutions along with appropriate selection pressure to converge becomes difficult as the number of objectives increase. This difficulty is further compounded for large-scale MaOPs, i.e., MaOPs possessing large amounts of decision variables. In this thesis, we explore the challenges of many-objective optimization and propose three new promising algorithms designed to efficiently solve MaOPs. Experimental results demonstrate the proposed optimizers to perform very well, often outperforming state-of-the-art many-objective algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, the potential macroeconomic effects of intermittent large adjustments in microeconomic decision variables such as prices, investment, consumption of durables or employment – a behavior which may be justified by the presence of kinked adjustment costs – have been studied in models where economic agents continuously observe the optimal level of their decision variable. In this paper, we develop a simple model which introduces infrequent information in a kinked adjustment cost model by assuming that agents do not observe continuously the frictionless optimal level of the control variable. Periodic releases of macroeconomic statistics or dividend announcements are examples of such infrequent information arrivals. We first solve for the optimal individual decision rule, that is found to be both state and time dependent. We then develop an aggregation framework to study the macroeconomic implications of such optimal individual decision rules. Our model has the distinct characteristic that a vast number of agents tend to act together, and more so when uncertainty is large. The average effect of an aggregate shock is inversely related to its size and to aggregate uncertainty. We show that these results differ substantially from the ones obtained with full information adjustment cost models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordination among supply chain members is essential for better supply chain performance. An effective method to improve supply chain coordination is to implement proper coordination mechanisms. The primary objective of this research is to study the performance of a multi-level supply chain while using selected coordination mechanisms separately, and in combination, under lost sale and back order cases. The coordination mechanisms used in this study are price discount, delay in payment and different types of information sharing. Mathematical modelling and simulation modelling are used in this study to analyse the performance of the supply chain using these mechanisms. Initially, a three level supply chain consisting of a supplier, a manufacturer and a retailer has been used to study the combined effect of price discount and delay in payment on the performance (profit) of supply chain using mathematical modelling. This study showed that implementation of individual mechanisms improves the performance of the supply chain compared to ‘no coordination’. When more than one mechanism is used in combination, performance in most cases further improved. The three level supply chain considered in mathematical modelling was then extended to a three level network supply chain consisting of a four retailers, two wholesalers, and a manufacturer with an infinite part supplier. The performance of this network supply chain was analysed under both lost sale and backorder cases using simulation modelling with the same mechanisms: ‘price discount and delay in payment’ used in mathematical modelling. This study also showed that the performance of the supply chain is significantly improved while using combination of mechanisms as obtained earlier. In this study, it is found that the effect (increase in profit) of ‘delay in payment’ and combination of ‘price discount’ & ‘delay in payment’ on SC profit is relatively high in the case of lost sale. Sensitivity analysis showed that order cost of the retailer plays a major role in the performance of the supply chain as it decides the order quantity of the other players in the supply chain in this study. Sensitivity analysis also showed that there is a proportional change in supply chain profit with change in rate of return of any player. In the case of price discount, elasticity of demand is an important factor to improve the performance of the supply chain. It is also found that the change in permissible delay in payment given by the seller to the buyer affects the SC profit more than the delay in payment availed by the buyer from the seller. In continuation of the above, a study on the performance of a four level supply chain consisting of a manufacturer, a wholesaler, a distributor and a retailer with ‘information sharing’ as coordination mechanism, under lost sale and backorder cases, using a simulation game with live players has been conducted. In this study, best performance is obtained in the case of sharing ‘demand and supply chain performance’ compared to other seven types of information sharing including traditional method. This study also revealed that effect of information sharing on supply chain performance is relatively high in the case of lost sale than backorder. The in depth analysis in this part of the study showed that lack of information sharing need not always be resulting in bullwhip effect. Instead of bullwhip effect, lack of information sharing produced a huge hike in lost sales cost or backorder cost in this study which is also not favorable for the supply chain. Overall analysis provided the extent of improvement in supply chain performance under different cases. Sensitivity analysis revealed useful insights about the decision variables of supply chain and it will be useful for the supply chain management practitioners to take appropriate decisions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper extends the build-operate-transfer (BOT) concession model (BOTCcM) to a new method for identifying a concession period by using bargaining-game theory. Concession period is one of the most important decision variables in arranging a BOT-type contract, and there are few methodologies available for helping to determine the value of this variable. The BOTCcM presents an alternative method by which a group of concession period solutions are produced. Nevertheless, a typical weakness in using BOTCcM is that the model cannot recommend a specific time span for concessionary. This paper introduces a new method called BOT bargaining concession model (BOTBaC) to enable the identification of a specific concession period, which takes into account the bargaining behavior of the two parties concerned in engaging a BOT contract, namely, the investor and the government concerned. The application of BOTBaC is demonstrated through using an example case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the one-dimensional cutting stock problem when demand is a random variable. The problem is formulated as a two-stage stochastic nonlinear program with recourse. The first stage decision variables are the number of objects to be cut according to a cutting pattern. The second stage decision variables are the number of holding or backordering items due to the decisions made in the first stage. The problem`s objective is to minimize the total expected cost incurred in both stages, due to waste and holding or backordering penalties. A Simplex-based method with column generation is proposed for solving a linear relaxation of the resulting optimization problem. The proposed method is evaluated by using two well-known measures of uncertainty effects in stochastic programming: the value of stochastic solution-VSS-and the expected value of perfect information-EVPI. The optimal two-stage solution is shown to be more effective than the alternative wait-and-see and expected value approaches, even under small variations in the parameters of the problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.