933 resultados para Decision Criteria
Resumo:
This paper reports a practitioner/academic collaboration that sought to identify the attributes salient in the decision-making process of individuals considering a charitable bequest in Australia. Philanthropy scholars concur that bequest making behaviour is generally not well understood or researched and is fertile terrain for new enquiry. They urge scholars and practitioners to integrate learning from other relevant disciplines to reveal new insights and understandings into why so many individuals elect to make a testamentary gift to a charity in their will or other planned giving instrument. This research draws on the branding literature; and effectively trialed the use of Kelly’s (1955) Repertory Test from clinical psychology, the results of which will provide researchers and charity marketing practitioners with an enhanced understanding of bequest decision criteria.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.
Resumo:
This document provides the findings of a national review of investment decision-making practices in road asset management. Efforts were concentrated on identifying the strategic objectives of agencies in road asset management, establishing and understanding criteria different organisations adopted and ascertaining the exact methodologies used by different sate road authorities. The investment objectives of Australian road authorities are based on triple-bottom line considerations (social, environmental, economic and political). In some cases, comparing with some social considerations, such as regional economic development, equity, and access to pubic service etc., Benefit-Cost Ratio has limited influence on the decision-making. Australian road authorities have developed various decision support tools. Although Multi-Criteria Analysis has been preliminarily used in case by case study, pavement management systems, which are primarily based on Benefit Cost Analysis, are still the main decision support tool. This situation is not compatible with the triple-bottom line objectives. There is need to fill the gap between decision support tools and decision-making itself. Different decision criteria should be adopted based on the contents of the work. Additional decision criteria, which are able to address social, environmental and political impacts, are needed to develop or identify. Environmental issue plays a more and more important role in decision-making. However, the criteria and respective weights in decision-making process are yet to be clearly identified. Social and political impacts resulted from road infrastructure investment can be identified through Community Perceptions Survey. With accumulative data, prediction models, which are similar as pavement performance models, can be established. Using these models, the decision-makers are able to foresee the social and political consequences of investment alternatives.
Resumo:
Reliable infrastructure assets impact significantly on quality of life and provide a stable foundation for economic growth and competitiveness. Decisions about the way assets are managed are of utmost importance in achieving this. Timely renewal of infrastructure assets supports reliability and maximum utilisation of infrastructure and enables business and community to grow and prosper. This research initially examined a framework for asset management decisions and then focused on asset renewal optimisation and renewal engineering optimisation in depth. This study had four primary objectives. The first was to develop a new Asset Management Decision Framework (AMDF) for identifying and classifying asset management decisions. The AMDF was developed by applying multi-criteria decision theory, classical management theory and life cycle management. The AMDF is an original and innovative contribution to asset management in that: · it is the first framework to provide guidance for developing asset management decision criteria based on fundamental business objectives; · it is the first framework to provide a decision context identification and analysis process for asset management decisions; and · it is the only comprehensive listing of asset management decision types developed from first principles. The second objective of this research was to develop a novel multi-attribute Asset Renewal Decision Model (ARDM) that takes account of financial, customer service, health and safety, environmental and socio-economic objectives. The unique feature of this ARDM is that it is the only model to optimise timing of asset renewal with respect to fundamental business objectives. The third objective of this research was to develop a novel Renewal Engineering Decision Model (REDM) that uses multiple criteria to determine the optimal timing for renewal engineering. The unique features of this model are that: · it is a novel extension to existing real options valuation models in that it uses overall utility rather than present value of cash flows to model engineering value; and · it is the only REDM that optimises timing of renewal engineering with respect to fundamental business objectives; The final objective was to develop and validate an Asset Renewal Engineering Philosophy (AREP) consisting of three principles of asset renewal engineering. The principles were validated using a novel application of real options theory. The AREP is the only renewal engineering philosophy in existence. The original contributions of this research are expected to enrich the body of knowledge in asset management through effectively addressing the need for an asset management decision framework, asset renewal and renewal engineering optimisation based on fundamental business objectives and a novel renewal engineering philosophy.
Resumo:
Distributed pipeline assets systems are crucial to society. The deterioration of these assets and the optimal allocation of limited budget for their maintenance correspond to crucial challenges for water utility managers. Decision makers should be assisted with optimal solutions to select the best maintenance plan concerning available resources and management strategies. Much research effort has been dedicated to the development of optimal strategies for maintenance of water pipes. Most of the maintenance strategies are intended for scheduling individual water pipe. Consideration of optimal group scheduling replacement jobs for groups of pipes or other linear assets has so far not received much attention in literature. It is a common practice that replacement planners select two or three pipes manually with ambiguous criteria to group into one replacement job. This is obviously not the best solution for job grouping and may not be cost effective, especially when total cost can be up to multiple million dollars. In this paper, an optimal group scheduling scheme with three decision criteria for distributed pipeline assets maintenance decision is proposed. A Maintenance Grouping Optimization (MGO) model with multiple criteria is developed. An immediate challenge of such modeling is to deal with scalability of vast combinatorial solution space. To address this issue, a modified genetic algorithm is developed together with a Judgment Matrix. This Judgment Matrix is corresponding to various combinations of pipe replacement schedules. An industrial case study based on a section of a real water distribution network was conducted to test the new model. The results of the case study show that new schedule generated a significant cost reduction compared with the schedule without grouping pipes.
Resumo:
We argue that aesthetic knowledge, which is a form of tacit knowledge of beauty and related concepts, is an important, yet under-researched, topic in the study of organizational decision making processes. The significance of aesthetic knowledge for decision making processes is derived from its universal application by humans to commonplace practices; its use as the basis of decision criteria in complex situations to which the effective application of logic and reason is difficult; and its role both in assisting cognition in general and in enabling the choice of solutions generated from rational decision making processes. Despite its importance, the empirical research examining the application of aesthetic knowledge in organizational decision making processes is limited. Further detailed study of aesthetic knowledge in the context of organizational decision making processes is required to extend the recent movement in the field aimed at examining the role that extrarational, human-centered factors play in organizational decisions.
Resumo:
A crucial task in contractor prequalification is to establish a set of decision criteria through which the capabilities of contractors are measured and judged. However, in the UK, there are no nationwide standards or guidelines governing the selection of decision criteria for contractor prequalification. The decision criteria are usually established by individual clients on an ad hoc basis. This paper investigates the divergence of decision criteria used by different client and consultant organisations in contractor prequalification through a large empirical survey conducted in the UK. The results indicate that there are significant differences in the selection and use of decision criteria for prequalification.
Resumo:
A supply chain ecosystem consists of the elements of the supply chain and the entities that influence the goods, information and financial flows through the supply chain. These influences come through government regulations, human, financial and natural resources, logistics infrastructure and management, etc., and thus affect the supply chain performance. Similarly, all the ecosystem elements also contribute to the risk. The aim of this paper is to identify both performances-based and risk-based decision criteria, which are important and critical to the supply chain. A two step approach using fuzzy AHP and fuzzy technique for order of preference by similarity to ideal solution has been proposed for multi-criteria decision-making and illustrated using a numerical example. The first step does the selection without considering risks and then in the next step suppliers are ranked according to their risk profiles. Later, the two ranks are consolidated into one. In subsequent section, the method is also extended for multi-tier supplier selection. In short, we are presenting a method for the design of a resilient supply chain, in this paper.
Resumo:
Decision-making at the front-end of innovation is critical for the success of companies. This paper presents a simple visual method, called DMCA (Decision-Making Criteria Assessment), which was created to clarify and improve decision-making at the front-end of innovation. The method maps the uncertainty of project information and importance of decision criteria, compiling a measure that indicates whether the decision is highly uncertain, what information interferes with it, and what criteria are actually being considered. The DMCA method was tested in two projects that faced decision-making issues, and the results confirm the benefits of using this method in decision-making at the front-end. © 2012 IEEE.
Resumo:
This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.
Resumo:
For many organizations, maintaining and upgrading enterprise resource planning (ERP) systems (large packaged application software) is often far more costly than the initial implementation. Systematic planning and knowledge of the fundamental maintenance processes and maintenance-related management data are required in order to effectively and efficiently administer maintenance activities. This paper reports a revelatory case study of Government Services Provider (GSP), a high-performing ERP service provider to government agencies in Australia. GSP ERP maintenance-process and maintenance-data standards are compared with the IEEE/EIA 12207 software engineering standard for custom software, also drawing upon published research, to identify how practices in the ERP context diverge from the IEEE standard. While the results show that many best practices reflected in the IEEE standard have broad relevance to software generally, divergent practices in the ERP context necessitate a shift in management focus, additional responsibilities, and different maintenance decision criteria. Study findings may provide useful guidance to practitioners, as well as input to the IEEE and other related standards.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
Abstract: Purpose – Several major infrastructure projects in the Hong Kong Special Administrative Region (HKSAR) have been delivered by the build-operate-transfer (BOT) model since the 1960s. Although the benefits of using BOT have been reported abundantly in the contemporary literature, some BOT projects were less successful than the others. This paper aims to find out why this is so and to explore whether BOT is the best financing model to procure major infrastructure projects. Design/methodology/approach – The benefits of BOT will first be reviewed. Some completed BOT projects in Hong Kong will be examined to ascertain how far the perceived benefits of BOT have been materialized in these projects. A highly profiled project, the Hong Kong-Zhuhai-Macau Bridge, which has long been promoted by the governments of the People's Republic of China, Macau Special Administrative Region and the HKSAR that BOT is the preferred financing model, but suddenly reverted back to the traditional financing model to be funded primarily by the three governments with public money instead, will be studied to explore the true value of the BOT financial model. Findings – Six main reasons for this radical change are derived from the analysis: shorter take-off time for the project; difference in legal systems causing difficulties in drafting BOT agreements; more government control on tolls; private sector uninterested due to unattractive economic package; avoid allegation of collusion between business and the governments; and a comfortable financial reserve possessed by the host governments. Originality/value – The findings from this paper are believed to provide a better understanding to the real benefits of BOT and the governments' main decision criteria in delivering major infrastructure projects.
Resumo:
This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.