993 resultados para Decentralized energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In several wireless sensor networks, it is of interest to determine the maximum of the sensor readings and identify the sensor responsible for it. We propose a novel, decentralized, scalable, energy-efficient, timer-based, one-shot max function computation (TMC) algorithm. In it, the sensor nodes do not transmit their readings in a centrally pre-defined sequence. Instead, the nodes are grouped into clusters, and computation occurs over two contention stages. First, the nodes in each cluster contend with each other using the timer scheme to transmit their reading to their cluster-heads. Thereafter, the cluster-heads use the timer scheme to transmit the highest sensor reading in their cluster to the fusion node. One new challenge is that the use of the timer scheme leads to collisions, which can make the algorithm fail. We optimize the algorithm to minimize the average time required to determine the maximum subject to a constraint on the probability that it fails to find the maximum. TMC significantly lowers average function computation time, average number of transmissions, and average energy consumption compared to approaches proposed in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Present work shows the feasibility of decentralized energy options for the Tumkur district in India. Decentralized energy planning (DEP) involves scaling down energy planning to subnational or regional scales. The important aspect of the energy planning at decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least-cost to the economy and environment. The geographical coverage and scale reflects the level at which the analysis takes place, which is an important factor in determining the structure of models. In the present work, DEP modeling under different scenarios has been carried out for Tumkur district of India for the year 2020. DEP model is suitably scaled for obtaining the optimal mix of energy resources and technologies using a computer-based goal programming technique. The rural areas of the Tumkur district have different energy needs. Results show that electricity needs can be met by biomass gasifier technology, using biomass feedstock produced by allocating only 12% of the wasteland in the district at 8 t/ha/yr of biomass productivity. Surplus electricity can be produced by adopting the option of biomass power generation from energy plantations. The surplus electricity generated can be supplied to the grid. The sustainable development scenario is a least cost scenario apart from promoting self-reliance, local employment, and environmental benefits. (C) 2010 American Institute of Chemical Engineers Environ Prog, 30: 248-258, 2011

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demand-supply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demand supply matching within a community, and, (2) determine which of these options can suitably plug the existing demand-supply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper aims to assess the potential of decentralized bioenergy technologies in meeting rural energy needs and reducing carbon dioxide (CO2) emissions. Decentralized energy planning is carried out for the year 2005 and 2020. Decentralized energy planning model using goal programming technique is applied for different decentralized scales (village to a district) for obtaining the optimal mix of energy resources and technologies. Results show that it is possible to meet the energy requirements of all the services that are necessary to promote development and improve the quality of life in rural areas from village to district scale, by utilizing the locally available energy resources such as cattle dung, leaf litter and woody biomass feedstock from bioenergy plantation on wastelands. The decentralized energy planning model shows that biomass feedstock required at village to district level can even be obtained from biomass conserved by shifting to biogas for cooking. Under sustainable development scenario, the decentralized energy planning model shows that there is negligible emission of CO2, oxide of Sulphur (SOx) and oxide of nitrogen (NOx), even while meeting all the energy needs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present technical and economic studies of cogeneration systems utilizing combustion engines and gas turbines, applied in two establishments of the tertiary sector, regarding Brazilian conditions (according to Silveria, 1994). In the first step cogeneration systems utilizing combustion engines associated to absorption refrigeration systems are studied, in which electricity and cold air for a university building rate produced. In the second step some possibilities of the use of the gas turbine in cogeneration systems for a hospital are shown. In this case, the exhaust gases are utilized for the production of steam in a heat recovery steam generator (HRSG) or cold water in an absorption refrigeration system (for air conditioning) for the hospital building. The dynamic increment of the energy demand of Brazilian tertiary sector in last years can increase the installation of these cogeneration system (in compact version) as well as strengthen the development of the decentralized energy generation in Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a methodology for the study of a molten carbonate fuel cell cogeneration system and applied to a computer center building is developed. This system permits the recovery of waste heat, available between 600°C and 700°C, which can be used to the production of steam, hot and cold water, hot and cold air, depending on the recuperation equipment associated. Initially, some technical information about the most diffusing types of the fuel cell demonstration in the world are presented. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current socio-economic situation has brought a need to look for alternative ways to get energy that allow reducing the high dependence on fossil fuel sources while deflect from the climate change arising from the result of the use of these energy resources. Renewable sources of energy, low and medium temperature appear as high potential of energy resources, which have a major influence on the way of life of the people to enable decentralized energy production. In Brazil, in particular, have also the need to decentralize the energy grid, currently focused on energy from water source. The current water crisis, exemplifies the urgency of betting on other energy sources, as a way to help in emergency situations such as the current one. Therefore, this study evaluates the possibility of using biomass as a heat source in a Rankine Cycle Organic where instead of water; it uses thermal fluid as working fluid, was compared the urban areas of the city of Guaratinguetá with the urban area of the metropolitan region of São Paulo. Thus, it was established two scenarios, so it was possible to establish the cycle to be used