25 resultados para Datavetenskap
Resumo:
Hur arbetar en framgångsrik programmerare? Uppgifterna att programmera datorspel och att programmera industriella, säkerhetskritiska system verkar tämligen olika. Genom en noggrann empirisk undersökning jämför och kontrasterar avhandlingen dessa två former av programmering och visar att programmering innefattar mer än teknisk förmåga. Med utgångspunkt i hermeneutisk och retorisk teori och med hjälp av både kulturvetenskap och datavetenskap visar avhandlingen att programmerarnas tradition och värderingar är grundläggande för deras arbete, och att båda sorter av programmering kan uppfattas och analyseras genom klassisk texttolkningstradition. Dessutom kan datorprogram betraktas och analyseras med hjälp av klassiska teorier om talproduktion i praktiken - program ses då i detta sammanhang som ett slags yttranden. Allt som allt förespråkar avhandlingen en återkomst till vetenskapens grunder, vilka innebär en ständig och oupphörlig cyklisk rörelse mellan att erfara och att förstå. Detta står i kontrast till en reduktionistisk syn på vetenskapen, som skiljer skarpt mellan subjektivt och objektivt, och på så sätt utgår från möjligheten att uppnå fullständigt vetande. Ofullständigt vetande är tolkandets och hermeneutikens domän. Syftet med avhandlingen är att med hjälp av exempel demonstrera programmeringens kulturella, hermeneutiska och retoriska natur.
Resumo:
Avhandlingen har resulterat i en praktikteori (verksamhetsteori). En sådan teori har betydelse i det praktiska arbetet att utvärdera och utveckla verksamheter där komponentbaserad systemutveckling bedrivs. I avhandlingen presenteras hur en intern IT-verksamhet kan bedrivas för att möta nya krav på effektivitet, förändringsbarhet, kvalitet och säkerhet.
Resumo:
Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region.
Resumo:
Detta arbete har genomförts i samarbete med Försvarsmakten och behandlar vilka möjligheter som finns för forensiska undersökningar av e-boksläsaren Amazon Kindle. I arbetets litteraturstudie beskrivs hur tidigare forskning inom ämnet är kraftigt begränsad. Arbetet syftar därför till att besvara hur data kan extraheras från en Kindle, vilka data av forensiskt intresse en Kindle kan innehålla, var denna information lagras och om detta skiljer sig åt mellan olika modeller och firmware-versioner samt om det är nog att undersöka endast den del av minnet som är tillgänglig för användaren eller om ytterligare privilegier för att komma åt hela minnesarean bör införskaffas. För att göra detta fylls tre olika modeller av Kindles med information. Därefter tas avbilder på dem, dels på endast användarpartitionen och dels på dess fullständiga minnesarea efter att en privilegie-eskalering har utförts. Inhämtad data analyseras och resultatet presenteras. Resultatet visar att information av forensiskt intresse så som anteckningar, besökta webbsidor och dokument kan återfinnas, varför det finns ett värde i att utföra forensiska undersökningar på Amazon Kindles. Skillnader råder mellan vilken information som kan återfinnas och var den lagras på de olika enheterna. Enheterna har fyra partitioner varav endast en kan kommas åt utan privilegie-eskalering, varför det finns en fördel med att inhämta avbilder av hela minnesarean. Utöver ovanstående presenteras en metod för att förbipassera en enhets kodlås och därigenom få fullständig åtkomst till den även om den är låst.
Resumo:
The p-median problem is often used to locate P service facilities in a geographically distributed population. Important for the performance of such a model is the distance measure. Distance measure can vary if the accuracy of the road network varies. The rst aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the road network is alternated. It is hard to nd an exact optimal solution for p-median problems. Therefore, in this study two heuristic solutions are applied, simulating annealing and a classic heuristic. The secondary aim is to compare the optimal location solutions using dierent algorithms for large p-median problem. The investigation is conducted by the means of a case study in a rural region with an asymmetrically distributed population, Dalecarlia. The study shows that the use of more accurate road networks gives better solutions for optimal location, regardless what algorithm that is used and regardless how many service facilities that is optimized for. It is also shown that the simulated annealing algorithm not just is much faster than the classic heuristic used here, but also in most cases gives better location solutions.
Resumo:
In this paper, we propose a new method for solving large scale p-median problem instances based on real data. We compare different approaches in terms of runtime, memory footprint and quality of solutions obtained. In order to test the different methods on real data, we introduce a new benchmark for the p-median problem based on real Swedish data. Because of the size of the problem addressed, up to 1938 candidate nodes, a number of algorithms, both exact and heuristic, are considered. We also propose an improved hybrid version of a genetic algorithm called impGA. Experiments show that impGA behaves as well as other methods for the standard set of medium-size problems taken from Beasley’s benchmark, but produces comparatively good results in terms of quality, runtime and memory footprint on our specific benchmark based on real Swedish data.
Resumo:
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Resumo:
The national railway administrations in Scandinavia, Germany, and Austria mainly resort to manual inspections to control vegetation growth along railway embankments. Manually inspecting railways is slow and time consuming. A more worrying aspect concerns the fact that human observers are often unable to estimate the true cover of vegetation on railway embankments. Further human observers often tend to disagree with each other when more than one observer is engaged for inspection. Lack of proper techniques to identify the true cover of vegetation even result in the excess usage of herbicides; seriously harming the environment and threating the ecology. Hence work in this study has investigated aspects relevant to human variationand agreement to be able to report better inspection routines. This was studied by mainly carrying out two separate yet relevant investigations.First, thirteen observers were separately asked to estimate the vegetation cover in nine imagesacquired (in nadir view) over the railway tracks. All such estimates were compared relatively and an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05). Bearing in difference between the observers, a second follow-up field-study on the railway tracks was initiated and properly investigated. Two railway segments (strata) representingdifferent levels of vegetationwere carefully selected. Five sample plots (each covering an area of one-by-one meter) were randomizedfrom each stratumalong the rails from the aforementioned segments and ten images were acquired in nadir view. Further three observers (with knowledge in the railway maintenance domain) were separately asked to estimate the plant cover by visually examining theplots. Again an analysis of variance resulted in a significant difference on the observers’ cover estimates (p<0.05) confirming the result from the first investigation.The differences in observations are compared against a computer vision algorithm which detects the "true" cover of vegetation in a given image. The true cover is defined as the amount of greenish pixels in each image as detected by the computer vision algorithm. Results achieved through comparison strongly indicate that inconsistency is prevalent among the estimates reported by the observers. Hence, an automated approach reporting the use of computer vision is suggested, thus transferring the manual inspections into objective monitored inspections
Resumo:
In electronic commerce, systems development is based on two fundamental types of models, business models and process models. A business model is concerned with value exchanges among business partners, while a process model focuses on operational and procedural aspects of business communication. Thus, a business model defines the what in an e-commerce system, while a process model defines the how. Business process design can be facilitated and improved by a method for systematically moving from a business model to a process model. Such a method would provide support for traceability, evaluation of design alternatives, and seamless transition from analysis to realization. This work proposes a unified framework that can be used as a basis to analyze, to interpret and to understand different concepts associated at different stages in e-Commerce system development. In this thesis, we illustrate how UN/CEFACT’s recommended metamodels for business and process design can be analyzed, extended and then integrated for the final solutions based on the proposed unified framework. Also, as an application of the framework, we demonstrate how process-modeling tasks can be facilitated in e-Commerce system design. The proposed methodology, called BP3 stands for Business Process Patterns Perspective. The BP3 methodology uses a question-answer interface to capture different business requirements from the designers. It is based on pre-defined process patterns, and the final solution is generated by applying the captured business requirements by means of a set of production rules to complete the inter-process communication among these patterns.
Resumo:
Market research is often conducted through conventional methods such as surveys, focus groups and interviews. But the drawbacks of these methods are that they can be costly and timeconsuming. This study develops a new method, based on a combination of standard techniques like sentiment analysis and normalisation, to conduct market research in a manner that is free and quick. The method can be used in many application-areas, but this study focuses mainly on the veganism market to identify vegan food preferences in the form of a profile. Several food words are identified, along with their distribution between positive and negative sentiments in the profile. Surprisingly, non-vegan foods such as cheese, cake, milk, pizza and chicken dominate the profile, indicating that there is a significant market for vegan-suitable alternatives for such foods. Meanwhile, vegan-suitable foods such as coconut, potato, blueberries, kale and tofu also make strong appearances in the profile. Validation is performed by using the method on Volkswagen vehicle data to identify positive and negative sentiment across five car models. Some results were found to be consistent with sales figures and expert reviews, while others were inconsistent. The reliability of the method is therefore questionable, so the results should be used with caution.
Resumo:
Unplanned hospital readmissions increase health and medical care costs and indicate lower the lower quality of the healthcare services. Hence, predicting patients at risk to be readmitted is of interest. Using administrative data of patients being treated in the medical centers and hospitals in the Dalarna County, Sweden, during 2008 – 2016 two risk prediction models of hospital readmission are built. The first model relies on the logistic regression (LR) approach, predicts correctly 2,648 out of 3,392 observed readmission in the test dataset, reaching a c-statistics of 0.69. The second model is built using random forests (RF) algorithm; correctly predicts 2,183 readmission (out of 3,366) and 13,198 non-readmission events (out of 18,982). The discriminating ability of the best performing RF model (c-statistic 0.60) is comparable to that of the logistic model. Although the discriminating ability of both LR and RF risk prediction models is relatively modest, still these models are capable to identify patients running high risk of hospital readmission. These patients can then be targeted with specific interventions, in order to prevent the readmission, improve patients’ quality of life and reduce health and medical care costs.
Resumo:
The problem addressed concerns the determination of the average numberof successive attempts of guessing a word of a certain length consisting of letters withgiven probabilities of occurrence. Both first- and second-order approximations to a naturallanguage are considered. The guessing strategy used is guessing words in decreasing orderof probability. When word and alphabet sizes are large, approximations are necessary inorder to estimate the number of guesses. Several kinds of approximations are discusseddemonstrating moderate requirements regarding both memory and central processing unit(CPU) time. When considering realistic sizes of alphabets and words (100), the numberof guesses can be estimated within minutes with reasonable accuracy (a few percent) andmay therefore constitute an alternative to, e.g., various entropy expressions. For manyprobability distributions, the density of the logarithm of probability products is close to anormal distribution. For those cases, it is possible to derive an analytical expression for theaverage number of guesses. The proportion of guesses needed on average compared to thetotal number decreases almost exponentially with the word length. The leading term in anasymptotic expansion can be used to estimate the number of guesses for large word lengths.Comparisons with analytical lower bounds and entropy expressions are also provided.
Resumo:
Interactive applications do not require more bandwidth to go faster. Instead, they require less latency. Unfortunately, the current design of transport protocols such as TCP limits possible latency reductions. In this paper we evaluate and compare different loss recovery enhancements to fight tail loss latency. The two recently proposed mechanisms "RTO Restart" (RTOR) and "Tail Loss Probe" (TLP) as well as a new mechanism that applies the logic of RTOR to the TLP timer management (TLPR) are considered. The results show that the relative performance of RTOR and TLP when tail loss occurs is scenario dependent, but with TLP having potentially larger gains. The TLPR mechanism reaps the benefits of both approaches and in most scenarios it shows the best performance.
Resumo:
The goal of the study was to investigate differences in how two groups of students activated mathematical competencies in the mathematical kangaroo (MK). The two groups, group 1 and 2, were identified from a sample of 264 students (grade 7, age 13) through high achievement (top 20 %) in only one of the tests: the MK or a curriculum bounded test (CT). Analysis of mathematical competencies showed that the high achievers in the MK, activated the problem solving competency to a greater extent than the high achievers in the CT, when doing the MK. The results indicate the importance of using non-traditional tests in the assessment process of students to be able to find students that might possess good mathematical competencies although they do not show it on curriculum bounded tests.