928 resultados para Database encryption
Resumo:
EMR (Electronic Medical Record) is an emerging technology that is highly-blended between non-IT and IT area. One methodology is to link the non-IT and IT area is to construct databases. Nowadays, it supports before and after-treatment for patients and should satisfy all stakeholders such as practitioners, nurses, researchers, administrators and financial departments and so on. In accordance with the database maintenance, DAS (Data as Service) model is one solution for outsourcing. However, there are some scalability and strategy issues when we need to plan to use DAS model properly. We constructed three kinds of databases such as plan-text, MS built-in encryption which is in-house model and custom AES (Advanced Encryption Standard) - DAS model scaling from 5K to 2560K records. To perform custom AES-DAS better, we also devised Bucket Index using Bloom Filter. The simulation showed the response times arithmetically increased in the beginning but after a certain threshold, exponentially increased in the end. In conclusion, if the database model is close to in-house model, then vendor technology is a good way to perform and get query response times in a consistent manner. If the model is DAS model, it is easy to outsource the database, however, some techniques like Bucket Index enhances its utilization. To get faster query response times, designing database such as consideration of the field type is also important. This study suggests cloud computing would be a next DAS model to satisfy the scalability and the security issues.
Resumo:
The encryption method is a well established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The performance of the database depends on how to encrypt the sensitive data. In this paper we review the conventional encryption method which can be partially queried and propose the encryption method for numerical data which can be effectively queried. The proposed system includes the design of the service scenario, and metadata.
Resumo:
Electronic Health Record (EHR) retrieval processes are complex demanding Information Technology (IT) resources exponentially in particular memory usage. Database-as-a-service (DAS) model approach is proposed to meet the scalability factor of EHR retrieval processes. A simulation study using ranged of EHR records with DAS model was presented. The bucket-indexing model incorporated partitioning fields and bloom filters in a Singleton design pattern were used to implement custom database encryption system. It effectively provided faster responses in the range query compared to different types of queries used such as aggregation queries among the DAS, built-in encryption and the plain-text DBMS. The study also presented with constraints around the approach should consider for other practical applications.
Resumo:
Database security techniques are available widely. Among those techniques, the encryption method is a well-certified and established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The performance of the database depends on how to encrypt the sensitive data, and an approach for searching and retrieval efficiencies that are implemented. In this paper we analyze the database queries and the data properties and propose a suitable mechanism to query the encrypted database. We proposed and analyzed the new database encryption algorithm using the Bloom Filter with the bucket index method. Finally, we demonstrated the superiority of the proposed algorithm through several experiments that should be useful for database encryption related research and application activities.
Resumo:
Big Data is a rising IT trend similar to cloud computing, social networking or ubiquitous computing. Big Data can offer beneficial scenarios in the e-health arena. However, one of the scenarios can be that Big Data needs to be kept secured for a long period of time in order to gain its benefits such as finding cures for infectious diseases and protecting patient privacy. From this connection, it is beneficial to analyse Big Data to make meaningful information while the data is stored securely. Therefore, the analysis of various database encryption techniques is essential. In this study, we simulated 3 types of technical environments, namely, Plain-text, Microsoft Built-in Encryption, and custom Advanced Encryption Standard, using Bucket Index in Data-as-a-Service. The results showed that custom AES-DaaS has a faster range query response time than MS built-in encryption. Furthermore, while carrying out the scalability test, we acknowledged that there are performance thresholds depending on physical IT resources. Therefore, for the purpose of efficient Big Data management in eHealth it is noteworthy to examine their scalability limits as well even if it is under a cloud computing environment. In addition, when designing an e-health database, both patient privacy and system performance needs to be dealt as top priorities.
Resumo:
DAS(databaseasaservice)模型数据库中采用加密方案的关键问题之一是针对密文关系的查询处理.DAS模型特有的体系结构和信任模型决定了加密解密操作只能在客户端进行,目前的方案普遍在元组粒度加密的基础上进行查询重写,不可避免地造成了加密效率的损失.为此,提出一种支持属性粒度加密方案的查询重写算法,利用关系代数公式对查询语句进行等价变换,将涉及加密属性的条件谓词与其他条件谓词分离,重构查询语句,支持任意层次的相关子查询.实验显示,算法能够降低客户端与服务器间的网络传输数据量,从而有效地缩短加密DAS模型数据库的查询执行时间.
Resumo:
Homomorphic encryption is a particular type of encryption method that enables computing over encrypted data. This has a wide range of real world ramifications such as being able to blindly compute a search result sent to a remote server without revealing its content. In the first part of this thesis, we discuss how database search queries can be made secure using a homomorphic encryption scheme based on the ideas of Gahi et al. Gahi’s method is based on the integer-based fully homomorphic encryption scheme proposed by Dijk et al. We propose a new database search scheme called the Homomorphic Query Processing Scheme, which can be used with the ring-based fully homomorphic encryption scheme proposed by Braserski. In the second part of this thesis, we discuss the cybersecurity of the smart electric grid. Specifically, we use the Homomorphic Query Processing scheme to construct a keyword search technique in the smart grid. Our work is based on the Public Key Encryption with Keyword Search (PEKS) method introduced by Boneh et al. and a Multi-Key Homomorphic Encryption scheme proposed by L´opez-Alt et al. A summary of the results of this thesis (specifically the Homomorphic Query Processing Scheme) is published at the 14th Canadian Workshop on Information Theory (CWIT).
Resumo:
In the recent past, there are some social issues when personal sensitive data in medical database were exposed. The personal sensitive data should be protected and access must be accounted for. Protecting the sensitive information is possible by encrypting such information. The challenge is querying the encrypted information when making the decision. Encrypted query is practically somewhat tedious task. So we present the more effective method using bucket index and bloom filter technology. We find that our proposed method shows low memory and fast efficiency comparatively. Simulation approaches on data encryption techniques to improve health care decision making processes are presented in this paper as a case scenario.
Resumo:
In the medical and healthcare arena, patients‟ data is not just their own personal history but also a valuable large dataset for finding solutions for diseases. While electronic medical records are becoming popular and are used in healthcare work places like hospitals, as well as insurance companies, and by major stakeholders such as physicians and their patients, the accessibility of such information should be dealt with in a way that preserves privacy and security. Thus, finding the best way to keep the data secure has become an important issue in the area of database security. Sensitive medical data should be encrypted in databases. There are many encryption/ decryption techniques and algorithms with regard to preserving privacy and security. Currently their performance is an important factor while the medical data is being managed in databases. Another important factor is that the stakeholders should decide more cost-effective ways to reduce the total cost of ownership. As an alternative, DAS (Data as Service) is a popular outsourcing model to satisfy the cost-effectiveness but it takes a consideration that the encryption/ decryption modules needs to be handled by trustworthy stakeholders. This research project is focusing on the query response times in a DAS model (AES-DAS) and analyses the comparison between the outsourcing model and the in-house model which incorporates Microsoft built-in encryption scheme in a SQL Server. This research project includes building a prototype of medical database schemas. There are 2 types of simulations to carry out the project. The first stage includes 6 databases in order to carry out simulations to measure the performance between plain-text, Microsoft built-in encryption and AES-DAS (Data as Service). Particularly, the AES-DAS incorporates implementations of symmetric key encryption such as AES (Advanced Encryption Standard) and a Bucket indexing processor using Bloom filter. The results are categorised such as character type, numeric type, range queries, range queries using Bucket Index and aggregate queries. The second stage takes the scalability test from 5K to 2560K records. The main result of these simulations is that particularly as an outsourcing model, AES-DAS using the Bucket index shows around 3.32 times faster than a normal AES-DAS under the 70 partitions and 10K record-sized databases. Retrieving Numeric typed data takes shorter time than Character typed data in AES-DAS. The aggregation query response time in AES-DAS is not as consistent as that in MS built-in encryption scheme. The scalability test shows that the DBMS reaches in a certain threshold; the query response time becomes rapidly slower. However, there is more to investigate in order to bring about other outcomes and to construct a secured EMR (Electronic Medical Record) more efficiently from these simulations.
Resumo:
There has been tremendous interest in watermarking multimedia content during the past two decades, mainly for proving ownership and detecting tamper. Digital fingerprinting, that deals with identifying malicious user(s), has also received significant attention. While extensive work has been carried out in watermarking of images, other multimedia objects still have enormous research potential. Watermarking database relations is one of the several areas which demand research focus owing to the commercial implications of database theft. Recently, there has been little progress in database watermarking, with most of the watermarking schemes modeled after the irreversible database watermarking scheme proposed by Agrawal and Kiernan. Reversibility is the ability to re-generate the original (unmarked) relation from the watermarked relation using a secret key. As explained in our paper, reversible watermarking schemes provide greater security against secondary watermarking attacks, where an attacker watermarks an already marked relation in an attempt to erase the original watermark. This paper proposes an improvement over the reversible and blind watermarking scheme presented in [5], identifying and eliminating a critical problem with the previous model. Experiments showing that the average watermark detection rate is around 91% even with attacker distorting half of the attributes. The current scheme provides security against secondary watermarking attacks.
Resumo:
Instead of the costly encryption algorithms traditionally employed in auction schemes, efficient Goldwasser-Micali encryption is used to design a new sealed-bid auction. Multiplicative homomorphism instead of the traditional additive homomorphism is exploited to achieve security and high efficiency in the auction. The new scheme is the currently known most efficient non-interactive sealed-bid auction with bid privacy.