985 resultados para Data handling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ISSIS is the instrument for imaging and slitless spectroscopy on-board WSO-UV. In this article, a detailed comparison between ISSIS expected radiometric performance and other ultraviolet instruments is shown. In addition, we present preliminary information on the performance verification tests and on the foreseen procedures for in-flight operation and data handling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"RADC-TDR-63-320."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The R package EasyStrata facilitates the evaluation and visualization of stratified genome-wide association meta-analyses (GWAMAs) results. It provides (i) statistical methods to test and account for between-strata difference as a means to tackle gene-strata interaction effects and (ii) extended graphical features tailored for stratified GWAMA results. The software provides further features also suitable for general GWAMAs including functions to annotate, exclude or highlight specific loci in plots or to extract independent subsets of loci from genome-wide datasets. It is freely available and includes a user-friendly scripting interface that simplifies data handling and allows for combining statistical and graphical functions in a flexible fashion. AVAILABILITY: EasyStrata is available for free (under the GNU General Public License v3) from our Web site www.genepi-regensburg.de/easystrata and from the CRAN R package repository cran.r-project.org/web/packages/EasyStrata/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, many museums, botanic gardens and herbariums keep data of biological collections and using computational tools researchers digitalize and provide access to their data using data portals. The replication of databases in portals can be accomplished through the use of protocols and data schema. However, the implementation of this solution demands a large amount of time, concerning both the transfer of fragments of data and processing data within the portal. With the growth of data digitalization in institutions, this scenario tends to be increasingly exacerbated, making it hard to maintain the records updated on the portals. As an original contribution, this research proposes analysing the data replication process to evaluate the performance of portals. The Inter-American Biodiversity Information Network (IABIN) biodiversity data portal of pollinators was used as a study case, which supports both situations: conventional data replication of records of specimen occurrences and interactions between them. With the results of this research, it is possible to simulate a situation before its implementation, thus predicting the performance of replication operations. Additionally, these results may contribute to future improvements to this process, in order to decrease the time required to make the data available in portals. © Rinton Press.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cloud computing offers massive scalability and elasticity required by many scien-tific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new oppor-tunities for application developers. This paper investigates how workflow sys-tems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Heading into the 2020s, Physics and Astronomy are undergoing experimental revolutions that will reshape our picture of the fabric of the Universe. The Large Hadron Collider (LHC), the largest particle physics project in the world, produces 30 petabytes of data annually that need to be sifted through, analysed, and modelled. In astrophysics, the Large Synoptic Survey Telescope (LSST) will be taking a high-resolution image of the full sky every 3 days, leading to data rates of 30 terabytes per night over ten years. These experiments endeavour to answer the question why 96% of the content of the universe currently elude our physical understanding. Both the LHC and LSST share the 5-dimensional nature of their data, with position, energy and time being the fundamental axes. This talk will present an overview of the experiments and data that is gathered, and outlines the challenges in extracting information. Common strategies employed are very similar to industrial data! Science problems (e.g., data filtering, machine learning, statistical interpretation) and provide a seed for exchange of knowledge between academia and industry. Speaker Biography Professor Mark Sullivan Mark Sullivan is a Professor of Astrophysics in the Department of Physics and Astronomy. Mark completed his PhD at Cambridge, and following postdoctoral study in Durham, Toronto and Oxford, now leads a research group at Southampton studying dark energy using exploding stars called "type Ia supernovae". Mark has many years' experience of research that involves repeatedly imaging the night sky to track the arrival of transient objects, involving significant challenges in data handling, processing, classification and analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in communication, navigation and imaging technologies are expected to fundamentally change methods currently used to collect data. Electronic data interchange strategies will also minimize data handling and automatically update files at the point of capture. This report summarizes the outcome of using a multi-camera platform as a method to collect roadway inventory data. It defines basic system requirements as expressed by users, who applied these techniques and examines how the application of the technology met those needs. A sign inventory case study was used to determine the advantages of creating and maintaining the database and provides the capability to monitor performance criteria for a Safety Management System. The project identified at least 75 percent of the data elements needed for a sign inventory can be gathered by viewing a high resolution image.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the challenges in scientific visualization is to generate software libraries suitable for the large-scale data emerging from tera-scale simulations and instruments. We describe the efforts currently under way at SDSC and NPACI to address these challenges. The scope of the SDSC project spans data handling, graphics, visualization, and scientific application domains. Components of the research focus on the following areas: intelligent data storage, layout and handling, using an associated “Floor-Plan” (meta data); performance optimization on parallel architectures; extension of SDSC’s scalable, parallel, direct volume renderer to allow perspective viewing; and interactive rendering of fractional images (“imagelets”), which facilitates the examination of large datasets. These concepts are coordinated within a data-visualization pipeline, which operates on component data blocks sized to fit within the available computing resources. A key feature of the scheme is that the meta data, which tag the data blocks, can be propagated and applied consistently. This is possible at the disk level, in distributing the computations across parallel processors; in “imagelet” composition; and in feature tagging. The work reflects the emerging challenges and opportunities presented by the ongoing progress in high-performance computing (HPC) and the deployment of the data, computational, and visualization Grids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study, covering students from public schools and a private school on the island of São Miguel (Azores, Portugal), aims to meet the difficulties of the students of the 3rd and 4th years of the primary education in solving tasks involving construction, reading and interpreting tables and statistical graphs, in the context of Organization and Data Handling (ODH). We present the main results obtained from statistical methods, among which we highlight some non-parametric hypothesis tests and the Categorical Principal Component Analysis (CatPCA), given the nature of the variables included in the questionnaire (mostly nominal and ordinal variables).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses sensor network applications which need to obtain an accurate image of physical phenomena and do so with a high sampling rate in both time and space. We present a fast and scalable approach for obtaining an approximate representation of all sensor readings at high sampling rate for quickly reacting to critical events in a physical environment. This approach is an improvement on previous work in that after the new approach has undergone a startup phase then the new approach can use a very small sampling period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.