995 resultados para Data cleaning
Resumo:
This paper presents the SmartClean tool. The purpose of this tool is to detect and correct the data quality problems (DQPs). Compared with existing tools, SmartClean has the following main advantage: the user does not need to specify the execution sequence of the data cleaning operations. For that, an execution sequence was developed. The problems are manipulated (i.e., detected and corrected) following that sequence. The sequence also supports the incremental execution of the operations. In this paper, the underlying architecture of the tool is presented and its components are described in detail. The tool's validity and, consequently, of the architecture is demonstrated through the presentation of a case study. Although SmartClean has cleaning capabilities in all other levels, in this paper are only described those related with the attribute value level.
Resumo:
The emergence of new business models, namely, the establishment of partnerships between organizations, the chance that companies have of adding existing data on the web, especially in the semantic web, to their information, led to the emphasis on some problems existing in databases, particularly related to data quality. Poor data can result in loss of competitiveness of the organizations holding these data, and may even lead to their disappearance, since many of their decision-making processes are based on these data. For this reason, data cleaning is essential. Current approaches to solve these problems are closely linked to database schemas and specific domains. In order that data cleaning can be used in different repositories, it is necessary for computer systems to understand these data, i.e., an associated semantic is needed. The solution presented in this paper includes the use of ontologies: (i) for the specification of data cleaning operations and, (ii) as a way of solving the semantic heterogeneity problems of data stored in different sources. With data cleaning operations defined at a conceptual level and existing mappings between domain ontologies and an ontology that results from a database, they may be instantiated and proposed to the expert/specialist to be executed over that database, thus enabling their interoperability.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as f-test is performed during each node’s split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
Supernovae are among the most energetic events occurring in the universe and are so far the only verified extrasolar source of neutrinos. As the explosion mechanism is still not well understood, recording a burst of neutrinos from such a stellar explosion would be an important benchmark for particle physics as well as for the core collapse models. The neutrino telescope IceCube is located at the Geographic South Pole and monitors the antarctic glacier for Cherenkov photons. Even though it was conceived for the detection of high energy neutrinos, it is capable of identifying a burst of low energy neutrinos ejected from a supernova in the Milky Way by exploiting the low photomultiplier noise in the antarctic ice and extracting a collective rate increase. A signal Monte Carlo specifically developed for water Cherenkov telescopes is presented. With its help, we will investigate how well IceCube can distinguish between core collapse models and oscillation scenarios. In the second part, nine years of data taken with the IceCube precursor AMANDA will be analyzed. Intensive data cleaning methods will be presented along with a background simulation. From the result, an upper limit on the expected occurrence of supernovae within the Milky Way will be determined.
Resumo:
Sviluppo e analisi di un dataset campione, composto da circa 3 mln di entry ed estratto da un data warehouse di informazioni riguardanti il consumo energetico di diverse smart home.
Resumo:
Increasing amounts of clinical research data are collected by manual data entry into electronic source systems and directly from research subjects. For this manual entered source data, common methods of data cleaning such as post-entry identification and resolution of discrepancies and double data entry are not feasible. However data accuracy rates achieved without these mechanisms may be higher than desired for a particular research use. We evaluated a heuristic usability method for utility as a tool to independently and prospectively identify data collection form questions associated with data errors. The method evaluated had a promising sensitivity of 64% and a specificity of 67%. The method was used as described in the literature for usability with no further adaptations or specialization for predicting data errors. We conclude that usability evaluation methodology should be further investigated for use in data quality assurance.
Resumo:
Dissertação de mestrado em Sistemas de Informação
Resumo:
The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.
Resumo:
The thesis aims to elaborate on the optimum trigger speed for Vehicle Activated Signs (VAS) and to study the effectiveness of VAS trigger speed on drivers’ behaviour. Vehicle activated signs (VAS) are speed warning signs that are activated by individual vehicle when the driver exceeds a speed threshold. The threshold, which triggers the VAS, is commonly based on a driver speed, and accordingly, is called a trigger speed. At present, the trigger speed activating the VAS is usually set to a constant value and does not consider the fact that an optimal trigger speed might exist. The optimal trigger speed significantly impacts driver behaviour. In order to be able to fulfil the aims of this thesis, systematic vehicle speed data were collected from field experiments that utilized Doppler radar. Further calibration methods for the radar used in the experiment have been developed and evaluated to provide accurate data for the experiment. The calibration method was bidirectional; consisting of data cleaning and data reconstruction. The data cleaning calibration had a superior performance than the calibration based on the reconstructed data. To study the effectiveness of trigger speed on driver behaviour, the collected data were analysed by both descriptive and inferential statistics. Both descriptive and inferential statistics showed that the change in trigger speed had an effect on vehicle mean speed and on vehicle standard deviation of the mean speed. When the trigger speed was set near the speed limit, the standard deviation was high. Therefore, the choice of trigger speed cannot be based solely on the speed limit at the proposed VAS location. The optimal trigger speeds for VAS were not considered in previous studies. As well, the relationship between the trigger value and its consequences under different conditions were not clearly stated. The finding from this thesis is that the optimal trigger speed should be primarily based on lowering the standard deviation rather than lowering the mean speed of vehicles. Furthermore, the optimal trigger speed should be set near the 85th percentile speed, with the goal of lowering the standard deviation.
Resumo:
Casamento aproximado de instâncias é um problema central em muitos processos de gerenciamento de dados, tais como integração de dados, data cleaning e consulta aproximada. O principal objetivo de casamento aproximado é determinar se duas instâncias representam o mesmo objeto do mundo real. Para valores atômicos, diversas funções de similaridade têm sido definidas, que geralmente são dependentes do domínio de valores. Por outro lado, casamento de valores agregados, como tuplas ou árvores XML, ainda é um problema importante. Neste cenário, dois problemas podem ser identificados. O primeiro diz respeito a como os resultados gerados por diferentes funções de similaridade devem ser combinados em um escore único, ou para um escore normalizado. Funções individuais geralmente geram escores que não são comparáveis, pode-se obter diferentes distribuições a partir de cada função. Isto significa que não existe uma forma simples de combinar escores gerados por funções de similaridade distintas usando uma medida simples, em casamento de agregados. Nesta tese, a proposta é, ao invés de utilizar os escores originalmente gerados pelas funções de similaridade, aplicar um método para estimar a precisão dos resultados de cada função, e usar esta precisão estimada como um escore ajustado. Através deste método, a proposta apresentada nesta tese envolve duas contribuições a este problema. Primeiro, é possível permitir que o usuário especifique valores de ponto de corte (thresholds) que sejam significativos, usando para isso um valor de precisão ajustada como um escore de similaridade Além disso, usando o escore ajustado, são obtidos resultados mais precisos em um processo de casamento aproximado de agregados. O segundo problema, surge quando os escores são combinados em casamento de agregados, e diz respeito à função de similaridade utilizada para combinar os valores. Particularmente, um agregado pode ser estruturado de diferentes maneiras, tais como tupla, conjunto e lista. O processo de combinação usado em cada caso deve ser distinto, a fim de se alcançar resultados mais exatos. Entretanto, não é claro como escores de similaridade individuais podem ser combinados para calcular, apropriadamente, escores para um agregado. O processo de combinação deveria ser distinto em cada caso. A contribuição apresentada para este problema é a definição de funções de similaridade específicas para cada tipo de agregado, dependendo da estruturação. Palavras-chave: Similaridade, funções de similaridade, casamento de instâncias, revocação e precisão.