969 resultados para Data assimilation
Resumo:
Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.
Resumo:
To study how the air and sea interact with each other during El Nino/La Nina onsets, extended associate pattern analysis (EAPA) is adopted with the simple ocean data assimilation (SODA) data. The results show that as El Nino/La Nina's parents their behaviors are quite different, there does not exist a relatively independent tropical atmosphere but does exist a relatively independent tropical Pacific Ocean because the air is heated from the bottom surface instead of the top surface and of much stronger baroclinic instability than the sea and has a very large inter-tropical convergence zone covering the most tropical Pacific Ocean. The idea that it is the wester burst and wind convergence, coming from middle latitudes directly that produce the seawater eastward movement and meridional convergence in the upper levels and result in the typical El Nino sea surface temperature warm signal is confirmed again.
Resumo:
Mesoscale eddy plays an important role in the ocean circulation. In order to improve the simulation accuracy of the mesoscale eddies, a three-dimensional variation (3DVAR) data assimilation system called Ocean Variational Analysis System (OVALS) is coupled with a POM model to simulate the mesoscale eddies in the Northwest Pacific Ocean. In this system, the sea surface height anomaly (SSHA) data by satellite altimeters are assimilated and translated into pseudo temperature and salinity (T-S) profile data. Then, these profile data are taken as observation data to be assimilated again and produce the three-dimensional analysis T-S field. According to the characteristics of mesoscale eddy, the most appropriate assimilation parameters are set up and testified in this system. A ten years mesoscale eddies simulation and comparison experiment is made, which includes two schemes: assimilation and non-assimilation. The results of comparison between two schemes and the observation show that the simulation accuracy of the assimilation scheme is much better than that of non-assimilation, which verified that the altimetry data assimilation method can improve the simulation accuracy of the mesoscale dramatically and indicates that it is possible to use this system on the forecast of mesoscale eddies in the future.
Resumo:
Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude-height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet- based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate results is found for the model domain used. Evidence is found of a trade-off between the localization of features in positional and spectral spaces when the number of bands is changed. By examining implied covariance diagnostics, the wavelet-based schemes are found, on the whole, to give results that are closer to diagnostics found from the explicit matrix than from the nonwavelet scheme. Even though the nature of the covariances has the right qualities in spectral space, variances are found to be too low at some wavenumbers and vertical correlation length scales are found to be too long at most scales. The wavelet schemes are found to be good at resolving variations in position and scale-dependent horizontal length scales, although the length scales reproduced are usually too short. The second of the wavelet-based schemes is often found to be better than the first in some important respects, but, unlike the first, it has no exact inverse transform.
Resumo:
This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.
Resumo:
The formulation of four-dimensional variational data assimilation allows the incorporation of constraints into the cost function which need only be weakly satisfied. In this paper we investigate the value of imposing conservation properties as weak constraints. Using the example of the two-body problem of celestial mechanics we compare weak constraints based on conservation laws with a constraint on the background state.We show how the imposition of conservation-based weak constraints changes the nature of the gradient equation. Assimilation experiments demonstrate how this can add extra information to the assimilation process, even when the underlying numerical model is conserving.
Resumo:
Data assimilation – the set of techniques whereby information from observing systems and models is combined optimally – is rapidly becoming prominent in endeavours to exploit Earth Observation for Earth sciences, including climate prediction. This paper explains the broad principles of data assimilation, outlining different approaches (optimal interpolation, three-dimensional and four-dimensional variational methods, the Kalman Filter), together with the approximations that are often necessary to make them practicable. After pointing out a variety of benefits of data assimilation, the paper then outlines some practical applications of the exploitation of Earth Observation by data assimilation in the areas of operational oceanography, chemical weather forecasting and carbon cycle modelling. Finally, some challenges for the future are noted.