902 resultados para Data analysis system
Resumo:
This thesis is an investigation into the nature of data analysis and computer software systems which support this activity.
The first chapter develops the notion of data analysis as an experimental science which has two major components: data-gathering and theory-building. The basic role of language in determining the meaningfulness of theory is stressed, and the informativeness of a language and data base pair is studied. The static and dynamic aspects of data analysis are then considered from this conceptual vantage point. The second chapter surveys the available types of computer systems which may be useful for data analysis. Particular attention is paid to the questions raised in the first chapter about the language restrictions imposed by the computer system and its dynamic properties.
The third chapter discusses the REL data analysis system, which was designed to satisfy the needs of the data analyzer in an operational relational data system. The major limitation on the use of such systems is the amount of access to data stored on a relatively slow secondary memory. This problem of the paging of data is investigated and two classes of data structure representations are found, each of which has desirable paging characteristics for certain types of queries. One representation is used by most of the generalized data base management systems in existence today, but the other is clearly preferred in the data analysis environment, as conceptualized in Chapter I.
This data representation has strong implications for a fundamental process of data analysis -- the quantification of variables. Since quantification is one of the few means of summarizing and abstracting, data analysis systems are under strong pressure to facilitate the process. Two implementations of quantification are studied: one analagous to the form of the lower predicate calculus and another more closely attuned to the data representation. A comparison of these indicates that the use of the "label class" method results in orders of magnitude improvement over the lower predicate calculus technique.
Resumo:
Timmis J and Neal M J. An artificial immune system for data analysis. In Proceedings of 3rd international workshop on information processing in cells and tissues (IPCAT), Indianapolis, U.S.A., 1999.
Resumo:
Timmis J and Neal M J. A resource limited artificial immune system for data analysis. In Proceedings of ES2000 - Research and Development of Intelligent Systems, pages 19-32, Cambrige, U.K., 2000. Springer.
Resumo:
The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Primary Care Information System (SIAB) concentrates basic healthcare information from all different regions of Brazil. The information is collected by primary care teams on a paper-based procedure that degrades the quality of information provided to the healthcare authorities and slows down the process of decision making. To overcome these problems we propose a new data gathering application that uses a mobile device connected to a 3G network and a GPS to be used by the primary care teams for collecting the families' data. A prototype was developed in which a digital version of one SIAB form is made available at the mobile device. The prototype was tested in a basic healthcare unit located in a suburb of Sao Paulo. The results obtained so far have shown that the proposed process is a better alternative for data collecting at primary care, both in terms of data quality and lower deployment time to health care authorities.
Resumo:
INTRODUCTION Despite important advances in psychological and pharmacological treatments of persistent depressive disorders in the past decades, their responses remain typically slow and poor, and differential responses among different modalities of treatments or their combinations are not well understood. Cognitive-Behavioural Analysis System of Psychotherapy (CBASP) is the only psychotherapy that has been specifically designed for chronic depression and has been examined in an increasing number of trials against medications, alone or in combination. When several treatment alternatives are available for a certain condition, network meta-analysis (NMA) provides a powerful tool to examine their relative efficacy by combining all direct and indirect comparisons. Individual participant data (IPD) meta-analysis enables exploration of impacts of individual characteristics that lead to a differentiated approach matching treatments to specific subgroups of patients. METHODS AND ANALYSIS We will search for all randomised controlled trials that compared CBASP, pharmacotherapy or their combination, in the treatment of patients with persistent depressive disorder, in Cochrane CENTRAL, PUBMED, SCOPUS and PsycINFO, supplemented by personal contacts. Individual participant data will be sought from the principal investigators of all the identified trials. Our primary outcomes are depression severity as measured on a continuous observer-rated scale for depression, and dropouts for any reason as a proxy measure of overall treatment acceptability. We will conduct a one-step IPD-NMA to compare CBASP, medications and their combinations, and also carry out a meta-regression to identify their prognostic factors and effect moderators. The model will be fitted in OpenBUGS, using vague priors for all location parameters. For the heterogeneity we will use a half-normal prior on the SD. ETHICS AND DISSEMINATION This study requires no ethical approval. We will publish the findings in a peer-reviewed journal. The study results will contribute to more finely differentiated therapeutics for patients suffering from this chronically disabling disorder. TRIAL REGISTRATION NUMBER CRD42016035886.
Resumo:
"August 1994."
Resumo:
Louisiana Transportation Research Center, Baton Rouge
Resumo:
This paper explores a method of comparative analysis and classification of data through perceived design affordances. Included is discussion about the musical potential of data forms that are derived through eco-structural analysis of musical features inherent in audio recordings of natural sounds. A system of classification of these forms is proposed based on their structural contours. The classifications include four primitive types; steady, iterative, unstable and impulse. The classification extends previous taxonomies used to describe the gestural morphology of sound. The methods presented are used to provide compositional support for eco-structuralism.
Resumo:
Road agencies require comprehensive, relevan and quality data describing their road assets to support their investment decisions. An investment decision support system for raod maintenance and rehabilitation mainly comprise three important supporting elements namely: road asset data, decision support tools and criteria for decision-making. Probability-based methods have played a crucial role in helping decision makers understand the relationship among road related data, asset performance and uncertainties in estimating budgets/costs for road management investment. This paper presents applications of the probability-bsed method for road asset management.
Resumo:
Background: Childhood undernutrition and mortality are high in Nepal, and therefore interventions on infant and young child feeding practices deserve high priority. Objective. To estimate infant and young child feeding indicators and the determinants of selected feeding practices. Methods: The sample consisted of 1,906 children aged 0 to 23 months from the Demographic and Health Survey 2006. Selected indicators were examined against a set of variables using univariate and multivariate analyses. Results. Breastfeeding was initiated within the first hour after birth in 35.4% of children, 99.5% were ever breastfed, 98.1% were currently breastfed, and 3.5% were bottle-fed. The rate of exclusive breastfeeding among infants under 6 months of age was 53.1%, and the rate of timely complementary feeding among those 6 to 9 months of age was 74.7%. Mothers who made antenatal clinic visits were at a higher risk for no exclusive breastfeeding than those who made no visits. Mothers who lived in the mountains were more likely to initiate breastfeeding within 1 hour after birth and to introduce complementary feeding at 6 to 9 months of age, but less likely to exclusively breastfeed. Cesarean deliveries were associated with delay in timely initiation of breastfeeding. Higher rates of complementary feeding at 6 to 9 months were also associated with mothers with better education and those above 35 years of age. Risk factors for bottle-feeding included living in urban areas and births attended by trained health personnel. Conclusions: Most breastfeeding indicators in Nepal are below the expected levels to achieve a substantial reduction in child mortality. Breastfeeding promotion strategies should specifically target mothers who have more contact with the health care delivery system, while programs targeting the entire community should be continued.
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.