970 resultados para Data Streams Distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern technology has allowed real-time data collection in a variety of domains, ranging from environmental monitoring to healthcare. Consequently, there is a growing need for algorithms capable of performing inferential tasks in an online manner, continuously revising their estimates to reflect the current status of the underlying process. In particular, we are interested in constructing online and temporally adaptive classifiers capable of handling the possibly drifting decision boundaries arising in streaming environments. We first make a quadratic approximation to the log-likelihood that yields a recursive algorithm for fitting logistic regression online. We then suggest a novel way of equipping this framework with self-tuning forgetting factors. The resulting scheme is capable of tracking changes in the underlying probability distribution, adapting the decision boundary appropriately and hence maintaining high classification accuracy in dynamic or unstable environments. We demonstrate the scheme's effectiveness in both real and simulated streaming environments. © Springer-Verlag 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cluster analysis has played a key role in data understanding. When such an important data mining task is extended to the context of data streams, it becomes more challenging since the data arrive at a mining system in one-pass manner. The problem is even more difficult when the clustering task is considered in a sliding window model which requiring the elimination of outdated data must be dealt with properly. We propose SWEM algorithm that exploits the Expectation Maximization technique to address these challenges. SWEM is not only able to process the stream in an incremental manner, but also capable to adapt to changes happened in the underlying stream distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to estimate a particular quantile of a distribution is an important problem which frequently arises in many computer vision and signal processing applications. For example, our work was motivated by the requirements of many semi-automatic surveillance analytics systems which detect abnormalities in close-circuit television (CCTV) footage using statistical models of low-level motion features. In this paper we specifically address the problem of estimating the running quantile of a data stream with non-stationary stochasticity when the memory for storing observations is limited. We make several major contributions: (i) we derive an important theoretical result which shows that the change in the quantile of a stream is constrained regardless of the stochastic properties of data, (ii) we describe a set of high-level design goals for an effective estimation algorithm that emerge as a consequence of our theoretical findings, (iii) we introduce a novel algorithm which implements the aforementioned design goals by retaining a sample of data values in a manner adaptive to changes in the distribution of data and progressively narrowing down its focus in the periods of quasi-stationary stochasticity, and (iv) we present a comprehensive evaluation of the proposed algorithm and compare it with the existing methods in the literature on both synthetic data sets and three large 'real-world' streams acquired in the course of operation of an existing commercial surveillance system. Our findings convincingly demonstrate that the proposed method is highly successful and vastly outperforms the existing alternatives, especially when the target quantile is high valued and the available buffer capacity severely limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to estimate a particular quantile of a distribution is an important problem that frequently arises in many computer vision and signal processing applications. For example, our work was motivated by the requirements of many semiautomatic surveillance analytics systems that detect abnormalities in close-circuit television footage using statistical models of low-level motion features. In this paper, we specifically address the problem of estimating the running quantile of a data stream when the memory for storing observations is limited. We make the following several major contributions: 1) we highlight the limitations of approaches previously described in the literature that make them unsuitable for nonstationary streams; 2) we describe a novel principle for the utilization of the available storage space; 3) we introduce two novel algorithms that exploit the proposed principle in different ways; and 4) we present a comprehensive evaluation and analysis of the proposed algorithms and the existing methods in the literature on both synthetic data sets and three large real-world streams acquired in the course of operation of an existing commercial surveillance system. Our findings convincingly demonstrate that both of the proposed methods are highly successful and vastly outperform the existing alternatives. We show that the better of the two algorithms (data-aligned histogram) exhibits far superior performance in comparison with the previously described methods, achieving more than 10 times lower estimate errors on real-world data, even when its available working memory is an order of magnitude smaller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a single pass algorithm for mining discriminative Itemsets in data streams using a novel data structure and the tilted-time window model. Discriminative Itemsets are defined as Itemsets that are frequent in one data stream and their frequency in that stream is much higher than the rest of the streams in the dataset. In order to deal with the data structure size, we propose a pruning process that results in the compact tree structure containing discriminative Itemsets. Empirical analysis shows the sound time and space complexity of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate adaptive buffer management techniques for approximate evaluation of sliding window joins over multiple data streams. In many applications, data stream processing systems have limited memory or have to deal with very high speed data streams. In both cases, computing the exact results of joins between these streams may not be feasible, mainly because the buffers used to compute the joins contain much smaller number of tuples than the tuples contained in the sliding windows. Therefore, a stream buffer management policy is needed in that case. We show that the buffer replacement policy is an important determinant of the quality of the produced results. To that end, we propose GreedyDual-Join (GDJ) an adaptive and locality-aware buffering technique for managing these buffers. GDJ exploits the temporal correlations (at both long and short time scales), which we found to be prevalent in many real data streams. We note that our algorithm is readily applicable to multiple data streams and multiple joins and requires almost no additional system resources. We report results of an experimental study using both synthetic and real-world data sets. Our results demonstrate the superiority and flexibility of our approach when contrasted to other recently proposed techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data streaming model provides an attractive framework for one-pass summarization of massive data sets at a single observation point. However, in an environment where multiple data streams arrive at a set of distributed observation points, sketches must be computed remotely and then must be aggregated through a hierarchy before queries may be conducted. As a result, many sketch-based methods for the single stream case do not apply directly, as either the error introduced becomes large, or because the methods assume that the streams are non-overlapping. These limitations hinder the application of these techniques to practical problems in network traffic monitoring and aggregation in sensor networks. To address this, we develop a general framework for evaluating and enabling robust computation of duplicate-sensitive aggregate functions (e.g., SUM and QUANTILE), over data produced by distributed sources. We instantiate our approach by augmenting the Count-Min and Quantile-Digest sketches to apply in this distributed setting, and analyze their performance. We conclude with experimental evaluation to validate our analysis.