964 resultados para Data Migration Processes Modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing and implementing data-oriented workflows for data migration processes are complex tasks involving several problems related to the integration of data coming from different schemas. Usually, they involve very specific requirements - every process is almost unique. Having a way to abstract their representation will help us to better understand and validate them with business users, which is a crucial step for requirements validation. In this demo we present an approach that provides a way to enrich incrementally conceptual models in order to support an automatic way for producing their correspondent physical implementation. In this demo we will show how B2K (Business to Kettle) system works transforming BPMN 2.0 conceptual models into Kettle data-integration executable processes, approaching the most relevant aspects related to model design and enrichment, model to system transformation, and system execution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of the increase in workplace automation and the diversification of industrial processes, workplaces have become more and more complex. The classical approaches used to address workplace hazard concerns, such as checklists or sequence models, are, therefore, of limited use in such complex systems. Moreover, because of the multifaceted nature of workplaces, the use of single-oriented methods, such as AEA (man oriented), FMEA (system oriented), or HAZOP (process oriented), is not satisfactory. The use of a dynamic modeling approach in order to allow multiple-oriented analyses may constitute an alternative to overcome this limitation. The qualitative modeling aspects of the MORM (man-machine occupational risk modeling) model are discussed in this article. The model, realized on an object-oriented Petri net tool (CO-OPN), has been developed to simulate and analyze industrial processes in an OH&S perspective. The industrial process is modeled as a set of interconnected subnets (state spaces), which describe its constitutive machines. Process-related factors are introduced, in an explicit way, through machine interconnections and flow properties. While man-machine interactions are modeled as triggering events for the state spaces of the machines, the CREAM cognitive behavior model is used in order to establish the relevant triggering events. In the CO-OPN formalism, the model is expressed as a set of interconnected CO-OPN objects defined over data types expressing the measure attached to the flow of entities transiting through the machines. Constraints on the measures assigned to these entities are used to determine the state changes in each machine. Interconnecting machines implies the composition of such flow and consequently the interconnection of the measure constraints. This is reflected by the construction of constraint enrichment hierarchies, which can be used for simulation and analysis optimization in a clear mathematical framework. The use of Petri nets to perform multiple-oriented analysis opens perspectives in the field of industrial risk management. It may significantly reduce the duration of the assessment process. But, most of all, it opens perspectives in the field of risk comparisons and integrated risk management. Moreover, because of the generic nature of the model and tool used, the same concepts and patterns may be used to model a wide range of systems and application fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transformation of the 1990s has had a bearing on the academic and scientific world, as is becoming increasingly obvious with the changing numbers of foreign students wishing to study in the Czech Republic and of Czech students wishing to study abroad, the virtual collapse of doctoral studies, and the rapidly increasing age of Czech academics (placed at 48 by official sources and at rather more by this research). At the same time there is an apparent lack of interest in analysing and understanding these trends, which Mr. Cermak terms an ostrich policy, although his research showed that academics are in fact both aware and concerned about them. The mid-1990s migration of talent to and from R+D in the Czech Republic is also reflected in the number of talented Czech students studying abroad, who represent the largest and most interesting group of actual and potential migrants. Mr. Cermak's study took the form of a Delphi enquiry participated in by 44 specialists, including experts in the problems of higher education and science policy from the Presidium of the Higher Education Council (n = 23), members of the Council's Science and Research Commission (n = 14), former and current managers of higher education authorities (n = 4) and selected participants of the longitudinal talent research (n = 3). Questions considered included the influence of continuing talent migration from domestic R+D on the efficiency of domestic higher education, the diversification of forms of the brain drain and their impact on other processes in society, the possibility of positive influence on the brain drain processes to minimise the risks it presents, and the use of the knowledge obtained about the brain drain. The study revealed a clear drop of interest in brain drain problems in higher education in the mid-1990s, which is probably related to the collapsed of Czech R+D in the field of talent education. The effects on this segment of the labour market appeared earlier, with a major migration wave in 1991-1993 which significantly "cleared" the area of scientific talent. In addition, prospective talents from the ranks of younger students have not been integrated into domestic R+D, leading to the increasing average age of those working in this field. "Talent scouting" tended to be oriented towards much younger individuals, even in some cases towards undergraduate students. The R+D institutions deprived of human resources considered as basic in a functional R+D system have lost much of their dynamism and so no longer attract not only domestic talent but also talent from other regions. As a result the public, including the mass media and political structures, have stopped regarding the support of domestic science as a priority. This is clear both among the young people who are important for the future development of R+D (support for the education of talented children has dropped), from the drop in the prestige of this area as a profession among university students, and from the lack of explicit support for R+D by any of the political parties. On the basis of his findings Mr. Cermak concludes that there is no basis for the belief that the brain drain will represent a positive force in stimulating the development of the open society. Migration data shows that the outflow of talent from the Czech Republic far exceeds the inflow, and that the latter is largely short-term. Not only has the number of returning Czech professors dropped to half of its level at the beginning of the 1990s, but they also tend to take up only short-term contracts and retain their foreign positions. Recruitment of scientific talent from other countries, including the Slovak Republic, is limited. Furthermore internal contacts between those already involved in R+D have been badly hit by economic pressures and institutional co-operation has dropped to a minimum. There have been few moves to counteract this situation, the only notable one being the Program 250, launched in 1996 with government support to try and attract younger (i.e. under 40) talent into R+D. Its resources are however limited and its effects have not so far been evaluated. The deficit of academic and scientific talent in the Czech Republic is increasing and two major directions of academic work are emerging. Classic higher education science based on the teaching process is declining, largely due to economic factors, while there is an increasing emphasis on special; ad hoc projects which cannot be related directly to teaching but are often interesting to specialists outside the Czech Republic. This is shown clearly by the increase in publishing and in participation in domestic and foreign grant projects, which often serve to supplement the otherwise low salaries in the higher education sector. This tend was also accelerated by the collapse of applied R+D in individual sectors of the national economy and by substantial cutbacks in the Czech Academy of Sciences, which formerly fostered such research. Some part of the output of this research can be used in the education system and its financial contribution does significantly affect the stability of the present staff, but Mr. Cermak sees it as generally unfavourable for the development of talent education. In addition, it has led to a certain resignation on the question of integration into international structures, due to the emphasis on short-term targets, commercial advantages and individualism rather than team work. At the same time, he admits that these developments reflect those in other areas of the transformation in the Czech Republic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today it is easy to find a lot of tools to define data migration schemas among different types of information systems. Data migration processes use to be implemented on a very diverse range of applications, ranging from conventional operational systems to data warehousing platforms. The implementation of a data migration process often involves a serious planning, considering the development of conceptual migration schemas at early stages. Such schemas help architects and engineers to plan and discuss the most adequate way to migrate data between two different systems. In this paper we present and discuss a way for enriching data migration conceptual schemas in BPMN using a domain-specific language, demonstrating how to convert such enriched schemas to a first correspondent physical representation (a skeleton) in a conventional ETL implementation tool like Kettle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their limited proliferation capacity, regulatory T cells (T(regs)) constitute a population maintained over the entire lifetime of a human organism. The means by which T(regs) sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of T(regs): precursor CD4(+)CD25(+)CD45RO(-) and mature CD4(+)CD25(+)CD45RO(+) cells. The lifelong dynamics of T(regs) are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4(+)CD25(+)FoxP3(+)T(regs) population is maintained over both precursor and mature T(regs) pools together, and (2) the ratio between precursor and mature T(regs) is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature T(regs) is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of T(regs) is essential for the development and the maintenance of the pool; there exist other sources of mature T(regs), such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived T(regs), and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of T(regs). This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pode-se afirmar que a evolução tecnológica (desenvolvimento de novos instrumentos de medição como, softwares, satélites e computadores, bem como, o barateamento das mídias de armazenamento) permite às Organizações produzirem e adquirirem grande quantidade de dados em curto espaço de tempo. Devido ao volume de dados, Organizações de pesquisa se tornam potencialmente vulneráveis aos impactos da explosão de informações. Uma solução adotada por algumas Organizações é a utilização de ferramentas de sistemas de informação para auxiliar na documentação, recuperação e análise dos dados. No âmbito científico, essas ferramentas são desenvolvidas para armazenar diferentes padrões de metadados (dados sobre dados). Durante o processo de desenvolvimento destas ferramentas, destaca-se a adoção de padrões como a Linguagem Unificada de Modelagem (UML, do Inglês Unified Modeling Language), cujos diagramas auxiliam na modelagem de diferentes aspectos do software. O objetivo deste estudo é apresentar uma ferramenta de sistemas de informação para auxiliar na documentação dos dados das Organizações por meio de metadados e destacar o processo de modelagem de software, por meio da UML. Será abordado o Padrão de Metadados Digitais Geoespaciais, amplamente utilizado na catalogação de dados por Organizações científicas de todo mundo, e os diagramas dinâmicos e estáticos da UML como casos de uso, sequências e classes. O desenvolvimento das ferramentas de sistemas de informação pode ser uma forma de promover a organização e a divulgação de dados científicos. No entanto, o processo de modelagem requer especial atenção para o desenvolvimento de interfaces que estimularão o uso das ferramentas de sistemas de informação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the use of singular value decomposition in transforming genome-wide expression data from genes × arrays space to reduced diagonalized “eigengenes” × “eigenarrays” space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.