965 resultados para Data Distribution Service
Resumo:
En este trabajo se ha investigado la posibilidad de utilizar el estándar DDS (Data Distribution Service) desarrollado por el OMG (Object Management Group) para la monitorización en tiempo real del nivel de glucosa en pacientes diabéticos. Dicho estándar sigue el patrón publicador/suscriptor de modo que, en la prueba de concepto desarrollada, los sensores del punto de cuidado son publicadores de los valores de glucosa de los pacientes y diferentes supervisores se suscriben a esa información. Estos supervisores reaccionan de la forma más adecuada a los valores y la evolución del nivel de glucosa en el paciente, por ejemplo, registrando el valor de la muestra o generando una alarma. El software de intermediación que soporta la comunicación de datos sigue el estándar DDS. Esto facilita por un lado la escalabilidad e interoperatividad de la solución desarrollada y por otro la monitorización de niveles de glucosa y la activación de protocolos predefinidos en tiempo real. La investigación se enmarca dentro del proyecto intramural PERSONA del CIBER-BBN, cuyo objetivo es el diseño de herramientas de soporte a la decisión para la monitorización continua de pacientes personalizadas e integradas en una plataforma tecnológica para diabetes.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.
Resumo:
Continuous field mapping has to address two conflicting remote sensing requirements when collecting training data. On one hand, continuous field mapping trains fractional land cover and thus favours mixed training pixels. On the other hand, the spectral signature has to be preferably distinct and thus favours pure training pixels. The aim of this study was to evaluate the sensitivity of training data distribution along fractional and spectral gradients on the resulting mapping performance. We derived four continuous fields (tree, shrubherb, bare, water) from aerial photographs as response variables and processed corresponding spectral signatures from multitemporal Landsat 5 TM data as explanatory variables. Subsequent controlled experiments along fractional cover gradients were then based on generalised linear models. Resulting fractional and spectral distribution differed between single continuous fields, but could be satisfactorily trained and mapped. Pixels with fractional or without respective cover were much more critical than pure full cover pixels. Error distribution of continuous field models was non-uniform with respect to horizontal and vertical spatial distribution of target fields. We conclude that a sampling for continuous field training data should be based on extent and densities in the fractional and spectral, rather than the real spatial space. Consequently, adequate training plots are most probably not systematically distributed in the real spatial space, but cover the gradient and covariate structure of the fractional and spectral space well. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
Data Distribution Management (DDM) is a core part of High Level Architecture standard, as its goal is to optimize the resources used by simulation environments to exchange data. It has to filter and match the set of information generated during a simulation, so that each federate, that is a simulation entity, only receives the information it needs. It is important that this is done quickly and to the best in order to get better performances and avoiding the transmission of irrelevant data, otherwise network resources may saturate quickly. The main topic of this thesis is the implementation of a super partes DDM testbed. It evaluates the goodness of DDM approaches, of all kinds. In fact it supports both region and grid based approaches, and it may support other different methods still unknown too. It uses three factors to rank them: execution time, memory and distance from the optimal solution. A prearranged set of instances is already available, but we also allow the creation of instances with user-provided parameters. This is how this thesis is structured. We start introducing what DDM and HLA are and what do they do in details. Then in the first chapter we describe the state of the art, providing an overview of the most well known resolution approaches and the pseudocode of the most interesting ones. The third chapter describes how the testbed we implemented is structured. In the fourth chapter we expose and compare the results we got from the execution of four approaches we have implemented. The result of the work described in this thesis can be downloaded on sourceforge using the following link: https://sourceforge.net/projects/ddmtestbed/. It is licensed under the GNU General Public License version 3.0 (GPLv3).
Resumo:
Il Data Distribution Management (DDM) è un componente dello standard High Level Architecture. Il suo compito è quello di rilevare le sovrapposizioni tra update e subscription extent in modo efficiente. All'interno di questa tesi si discute la necessità di avere un framework e per quali motivi è stato implementato. Il testing di algoritmi per un confronto equo, librerie per facilitare la realizzazione di algoritmi, automatizzazione della fase di compilazione, sono motivi che sono stati fondamentali per iniziare la realizzazione framework. Il motivo portante è stato che esplorando articoli scientifici sul DDM e sui vari algoritmi si è notato che in ogni articolo si creavano dei dati appositi per fare dei test. L'obiettivo di questo framework è anche quello di riuscire a confrontare gli algoritmi con un insieme di dati coerente. Si è deciso di testare il framework sul Cloud per avere un confronto più affidabile tra esecuzioni di utenti diversi. Si sono presi in considerazione due dei servizi più utilizzati: Amazon AWS EC2 e Google App Engine. Sono stati mostrati i vantaggi e gli svantaggi dell'uno e dell'altro e il motivo per cui si è scelto di utilizzare Google App Engine. Si sono sviluppati quattro algoritmi: Brute Force, Binary Partition, Improved Sort, Interval Tree Matching. Sono stati svolti dei test sul tempo di esecuzione e sulla memoria di picco utilizzata. Dai risultati si evince che l'Interval Tree Matching e l'Improved Sort sono i più efficienti. Tutti i test sono stati svolti sulle versioni sequenziali degli algoritmi e che quindi ci può essere un riduzione nel tempo di esecuzione per l'algoritmo Interval Tree Matching.
Resumo:
Verkostokeskeisessä sodankäynnissä tietojärjestelmien suurimpana haasteena on oikean tiedon hajauttaminen oikeaan paikkaan ja aikaan. Tietojärjestelmissä esitettävän ilmatilannekuvan tulee vastata reaalimaailman tilannetta parhaalla mahdollisella tavalla. Ilmatorjunnassa reaaliaikaisuus nousee erityisen suureen rooliin nopeasti liikkuvien kohteiden takia. Tämä diplomityö on tehty Insta DefSec Oy:ssä liittyen johtamisjärjestelmän uudistamishankkeeseen. Työn vaatimuksina olivat standardeihin perustuvat ratkaisut, joista keskeisimmäksi nousi Data Distribution Service -standardi (DDS) ja sen hyödyntäminen osana johtamisjärjestelmän tiedon hajautusta. Työssä esitellään johtamisjärjestelmien tiedon hajautukseen liittyviä haasteita sekä paikallisessa että maantieteellisesti hajautetussa toimintaympäristössä. Työssä toteutettiin liityntäohjelmisto nykyisen ja uuden johtamisjärjestelmän välille. Liityntäohjelmiston tehtävänä on tuottaa reaaliaikaista ilmatilannekuvaa nykyisestä johtamisjärjestelmästä uuteen johtamisjärjestelmään. DDS-standardin toteuttavana välikerrosarkkitehtuurina käytettiin OpenSplice DDS -tuotetta. Valittu teknologia tarjoaa edistykselliset julkaisija–tilaaja-mallin mukaiset menetelmät tiedon reaaliaikaiseen hajauttamiseen. DDS:n arkkitehtuuri ja palvelun laadun mekanismit mahdollistavat tiedon hajautuksen sodanajan johtamisjärjestelmille.
Resumo:
The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices.
Resumo:
The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.
Resumo:
PRELIDA (PREserving LInked DAta) is an FP7 Coordination Action funded by the European Commission under the Digital Preservation Theme. PRELIDA targets the particular stakeholders of the Linked Data community, including data providers, service providers, technology providers and end user communities. These stakeholders have not been traditionally targeted by the Digital Preservation community, and are typically not aware of the digital preservation solutions already available. So an important task of PRELIDA is to raise awareness of existing preservation solutions and to facilitate their uptake. At the same time, the Linked Data cloud has specific characteristics in terms of structuring, interlinkage, dynamicity and distribution that pose new challenges to the preservation community. PRELIDA organises in-depth discussions among the two communities to identify which of these characteristics require novel solutions, and to develop road maps for addressing the new challenges. PRELIDA will complete its lifecycle at the end of this year, and the talk will report about the major findings.
Resumo:
The goal of the this paper is to show that the DGPS data Internet service we designed and developed provides campus-wide real time access to Differential GPS (DGPS) data and, thus, supports precise outdoor navigation. First we describe the developed distributed system in terms of architecture (a three tier client/server application), services provided (real time DGPS data transportation from remote DGPS sources and campus wide data dissemination) and transmission modes implemented (raw and frame mode over TCP and UDP). Then we present and discuss the results obtained and, finally, we draw some conclusions.
Resumo:
The goal of the work presented in this paper is to provide mobile platforms within our campus with a GPS based data service capable of supporting precise outdoor navigation. This can be achieved by providing campus-wide access to real time Differential GPS (DGPS) data. As a result, we designed and implemented a three-tier distributed system that provides Internet data links between remote DGPS sources and the campus and a campus-wide DGPS data dissemination service. The Internet data link service is a two-tier client/server where the server-side is connected to the DGPS station and the client-side is located at the campus. The campus-wide DGPS data provider disseminates the DGPS data received at the campus via the campus Intranet and via a wireless data link. The wireless broadcast is intended for portable receivers equipped with a DGPS wireless interface and the Intranet link is provided for receivers with a DGPS serial interface. The application is expected to provide adequate support for accurate outdoor campus navigation tasks.