949 resultados para Dams Safety
Resumo:
Mode of access: Internet.
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
En España existen del orden de 1,300 grandes presas, de las cuales un 20% fueron construidas antes de los años 60. El hecho de que existan actualmente una gran cantidad de presas antiguas aún en operación, ha producido un creciente interés en reevaluar su seguridad empleando herramientas nuevas o modificadas que incorporan modelos de fallo teóricos más completos, conceptos geotécnicos más complejos y nuevas técnicas de evaluación de la seguridad. Una manera muy común de abordar el análisis de estabilidad de presas de gravedad es, por ejemplo, considerar el deslizamiento a través de la interfase presa-cimiento empleando el criterio de rotura lineal de Mohr-Coulomb, en donde la cohesión y el ángulo de rozamiento son los parámetros que definen la resistencia al corte de la superficie de contacto. Sin embargo la influencia de aspectos como la presencia de planos de debilidad en el macizo rocoso de cimentación; la influencia de otros criterios de rotura para la junta y para el macizo rocoso (ej. el criterio de rotura de Hoek-Brown); las deformaciones volumétricas que ocurren durante la deformación plástica en el fallo del macizo rocoso (i.e., influencia de la dilatancia) no son usualmente consideradas durante el diseño original de la presa. En este contexto, en la presente tesis doctoral se propone una metodología analítica para el análisis de la estabilidad al deslizamiento de presas de hormigón, considerando un mecanismo de fallo en la cimentación caracterizado por la presencia de una familia de discontinuidades. En particular, se considera la posibilidad de que exista una junta sub-horizontal, preexistente y persistente en el macizo rocoso de la cimentación, con una superficie potencial de fallo que se extiende a través del macizo rocoso. El coeficiente de seguridad es entonces estimado usando una combinación de las resistencias a lo largo de los planos de rotura, cuyas resistencias son evaluadas empleando los criterios de rotura no lineales de Barton y Choubey (1977) y Barton y Bandis (1990), a lo largo del plano de deslizamiento de la junta; y el criterio de rotura de Hoek y Brown (1980) en su versión generalizada (Hoek et al. 2002), a lo largo del macizo rocoso. La metodología propuesta también considera la influencia del comportamiento del macizo rocoso cuando este sigue una ley de flujo no asociada con ángulo de dilatancia constante (Hoek y Brown 1997). La nueva metodología analítica propuesta es usada para evaluar las condiciones de estabilidad empleando dos modelos: un modelo determinista y un modelo probabilista, cuyos resultados son el valor del coeficiente de seguridad y la probabilidad de fallo al deslizamiento, respectivamente. El modelo determinista, implementado en MATLAB, es validado usando soluciones numéricas calculadas mediante el método de las diferencias finitas, empleando el código FLAC 6.0. El modelo propuesto proporciona resultados que son bastante similares a aquellos calculados con FLAC; sin embargo, los costos computacionales de la formulación propuesta son significativamente menores, facilitando el análisis de sensibilidad de la influencia de los diferentes parámetros de entrada sobre la seguridad de la presa, de cuyos resultados se obtienen los parámetros que más peso tienen en la estabilidad al deslizamiento de la estructura, manifestándose además la influencia de la ley de flujo en la rotura del macizo rocoso. La probabilidad de fallo es obtenida empleando el método de fiabilidad de primer orden (First Order Reliability Method; FORM), y los resultados de FORM son posteriormente validados mediante simulaciones de Monte Carlo. Los resultados obtenidos mediante ambas metodologías demuestran que, para el caso no asociado, los valores de probabilidad de fallo se ajustan de manera satisfactoria a los obtenidos mediante las simulaciones de Monte Carlo. Los resultados del caso asociado no son tan buenos, ya que producen resultados con errores del 0.7% al 66%, en los que no obstante se obtiene una buena concordancia cuando los casos se encuentran en, o cerca de, la situación de equilibrio límite. La eficiencia computacional es la principal ventaja que ofrece el método FORM para el análisis de la estabilidad de presas de hormigón, a diferencia de las simulaciones de Monte Carlo (que requiere de al menos 4 horas por cada ejecución) FORM requiere tan solo de 1 a 3 minutos en cada ejecución. There are 1,300 large dams in Spain, 20% of which were built before 1960. The fact that there are still many old dams in operation has produced an interest of reevaluate their safety using new or updated tools that incorporate state-of-the-art failure modes, geotechnical concepts and new safety assessment techniques. For instance, for gravity dams one common design approach considers the sliding through the dam-foundation interface, using a simple linear Mohr-Coulomb failure criterion with constant friction angle and cohesion parameters. But the influence of aspects such as the persistence of joint sets in the rock mass below the dam foundation; of the influence of others failure criteria proposed for rock joint and rock masses (e.g. the Hoek-Brown criterion); or the volumetric strains that occur during plastic failure of rock masses (i.e., the influence of dilatancy) are often no considered during the original dam design. In this context, an analytical methodology is proposed herein to assess the sliding stability of concrete dams, considering an extended failure mechanism in its rock foundation, which is characterized by the presence of an inclined, and impersistent joint set. In particular, the possibility of a preexisting sub-horizontal and impersistent joint set is considered, with a potential failure surface that could extend through the rock mass; the safety factor is therefore computed using a combination of strength along the rock joint (using the nonlinear Barton and Choubey (1977) and Barton and Bandis (1990) failure criteria) and along the rock mass (using the nonlinear failure criterion of Hoek and Brown (1980) in its generalized expression from Hoek et al. (2002)). The proposed methodology also considers the influence of a non-associative flow rule that has been incorporated using a (constant) dilation angle (Hoek and Brown 1997). The newly proposed analytical methodology is used to assess the dam stability conditions, employing for this purpose the deterministic and probabilistic models, resulting in the sliding safety factor and the probability of failure respectively. The deterministic model, implemented in MATLAB, is validated using numerical solution computed with the finite difference code FLAC 6.0. The proposed deterministic model provides results that are very similar to those computed with FLAC; however, since the new formulation can be implemented in a spreadsheet, the computational cost of the proposed model is significantly smaller, hence allowing to more easily conduct parametric analyses of the influence of the different input parameters on the dam’s safety. Once the model is validated, parametric analyses are conducting using the main parameters that describe the dam’s foundation. From this study, the impact of the more influential parameters on the sliding stability analysis is obtained and the error of considering the flow rule is assessed. The probability of failure is obtained employing the First Order Reliability Method (FORM). The probabilistic model is then validated using the Monte Carlo simulation method. Results obtained using both methodologies show good agreement for cases in which the rock mass has a nonassociate flow rule. For cases with an associated flow rule errors between 0.70% and 66% are obtained, so that the better adjustments are obtained for cases with, or close to, limit equilibrium conditions. The main advantage of FORM on sliding stability analyses of gravity dams is its computational efficiency, so that Monte Carlo simulations require at least 4 hours on each execution, whereas FORM requires only 1 to 3 minutes on each execution.
Resumo:
The Kachchh region of Gujarat, India bore the brunt of a disastrous earthquake of magnitude M-w=7.6 that occurred on January 26, 2001. The major cause of failure of various structures including earthen dams was noted to be the presence of liquefiable alluvium in the foundation soil. Results of back-analysis of failures of Chang, Tappar, Kaswati and Rudramata earth dams using pseudo-static limit equilibrium approach presented in this paper confirm that the presence of liquefiable layer contributed to lesser factors of safety leading to a base type of failure that was also observed in the field. Following the earthquake, earth dams have been rehabilitated by the concerned authority and it is imperative that the reconstructed sections of earth dams be reanalyzed. It is also increasingly realized that risk assessment of dams in view of the large-scale investment made and probabilistic analysis is necessary. In this study, it is demonstrated that the probabilistic approach when used in conjunction with deterministic approach helps in providing a rational solution for quantification of safety of the dam and in the estimation of risk associated with the dam construction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In the present study, results of reliability analyses of four selected rehabilitated earth dam sections, i.e., Chang, Tapar, Rudramata, and Kaswati, under pseudostatic loading conditions, are presented. Using the response surface methodology, in combination with first order reliability method and numerical analysis, the reliability index (beta) values are obtained and results are interpreted in conjunction with conventional factor of safety values. The influence of considering variability in the input soil shear strength parameters, horizontal seismic coefficient (alpha(h)), and location of reservoir full level on the stability assessment of the earth dam sections is discussed in the probabilistic framework. A comparison of results with those obtained from other method of reliability analysis, viz., Monte Carlo simulations combined with limit equilibrium approach, provided a basis for discussing the stability of earth dams in probabilistic terms, and the results of the analysis suggest that the considered earth dam sections are reliable and are expected to perform satisfactorily.
Resumo:
Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.
Resumo:
Based on the broken characteristics about earthquake to tailings dams, the earthquake stability analysis methods for tailings dams are introduced. Taking fine tailings dam in Longdu Tailings Pool as an example, the stability of the dam with various situations while earthquake with seven magnitude takes place there. The results can be used by Longdu Mine for tailings pool safety management.
Resumo:
Several chemical reactions are able to produce swelling of concrete for decades after its initial curing, a problem that affects a considerable number of concrete dams around the world. Principia has had several contracts to study this problem in recent years, which have required reviewing the state-ofthe-art, adopting appropriate mathematical descriptions, programming them into user routines in Abaqus, determining model parameters on the basis of some parts of the dams’ monitored histories, ensuring reliability using some other parts, and finally predicting the future evolution of the dams and their safety margins. The paper describes some of the above experience, including the programming of sophisticated nonisotropic swelling models, that must be compatible with cracking and other nonlinearities involved in concrete behaviour. The applications concentrate on two specific cases, an arch-gravity dam and a double-curvature arch dam, both with a long history of concrete swelling and which, interestingly, entailed different degrees of success in the modelling efforts
Resumo:
Several chemical reactions are able to produce swelling of concrete for decades after its initial curing, a problem that affects a considerable number of concrete dams around the world. Principia has had several contracts to study this problem in recent years, which have required reviewing the state-of-the-art, adopting appropriate mathematical descriptions, programming them into user routines in Abaqus, determining model parameters on the basis of some parts of the dams’ monitored histories, ensuring reliability using some other parts, and finally predicting the future evolution of the dams and their safety margins. The paper describes some of the above experience, including the programming of sophisticated non-isotropic swelling models, that must be compatible with cracking and other nonlinearities involved in concrete behaviour. The applications concentrate on two specific cases, an archgravity dam and a double-curvature arch dam, both with a long history of concrete swelling and which, interestingly, entailed different degrees of success in the modelling efforts
Resumo:
Several chemical reactions are able to produce swelling of concrete for decades after its initial curing, a problem that affects a considerable number of concrete dams around the world. Principia has had several contracts to study this problem in recent years, which have required reviewing the state-ofthe-art, adopting appropriate mathematical descriptions, programming them into user routines in Abaqus, determining model parameters on the basis of some parts of the dams’ monitored histories, ensuring reliability using some other parts, and finally predicting the future evolution of the dams and their safety margins. The paper describes some of the above experience, including the programming of sophisticated nonisotropic swelling models, that must be compatible with cracking and other nonlinearities involved in concrete behaviour. The applications concentrate on two specific cases, an arch-gravity dam and a double-curvature arch dam, both with a long history of concrete swelling and which, interestingly, entailed different degrees of success in the modelling efforts.
Resumo:
This study characterises the abatement effect of large dams with fixed-crest spillways under extreme design flood conditions. In contrast to previous studies using specific hydrographs for flow into the reservoir and simplifications to obtain analytical solutions, an automated tool was designed for calculations based on a Monte Carlo simulation environment, which integrates models that represent the different physical processes in watersheds with areas of 150?2000 km2. The tool was applied to 21 sites that were uniformly distributed throughout continental Spain, with 105 fixed-crest dam configurations. This tool allowed a set of hydrographs to be obtained as an approximation for the hydrological forcing of a dam and the characterisation of the response of the dam to this forcing. For all cases studied, we obtained a strong linear correlation between the peak flow entering the reservoir and the peak flow discharged by the dam, and a simple general procedure was proposed to characterise the peak-flow attenuation behaviour of the reservoir. Additionally, two dimensionless coefficients were defined to relate the variables governing both the generation of the flood and its abatement in the reservoir. Using these coefficients, a model was defined to allow for the estimation of the flood abatement effect of a reservoir based on the available information. This model should be useful in the hydrological design of spillways and the evaluation of the hydrological safety of dams. Finally, the proposed procedure and model were evaluated and representative applications were presented
Resumo:
In this paper, a set of design parameters, such as the slopes of upstream and downstream faces of the dam, radius of the upper arch, width of the dam at the top level and height of the vertical upper part of the dam, are given as function of the valley characteristics when the dam is situated, such as its geometry and its geotechnical properties. These tables have been obtained using a regression of the design parameters of an arch-gravity dam with a minimum concrete volume, placed in a large number of valleys with different characteristics and properties. Elasticites for these design parameters are also discussed.