994 resultados para Damping (Mechanics)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory Contract no. AF 33(038)-20840; Project no. 7360; Task no. 73604."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Report no. CG-D-5-80"--Cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cover title.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Contract no. NO(s) 56-793-c."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(616)-5426, Project no. 7360."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(616)-5426, Project no. 7360."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF33(616)-5426, Project no. 7360."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(616)-5426, Project no. 7360."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(6169-5449, Project no. 7360."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Materials Laboratory, Contract no. AF 33(616)-5426, Project no. 7360."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oscillations of a drop moving in another fluid medium have been studied at low values of Reynolds number and Weber number by taking into consideration the shape of the drop and the viscosities of the two phases in addition to the interfacial tension. The deformation of the drop modifies the Lamb's expression for frequency by including a correction term while the viscous effects split the frequency into a pair of frequencies—one lower and the other higher than Lamb's. The lower frequency mode has ample experimental support while the higher frequency mode has also been observed. The two modes almost merge with Lamb's frequency for the asymptotic cases of a drop in free space or a bubble in a dense viscous fluid but the splitting becomes large when the two fluids have similar properties. Instead of oscillations, aperiodic damping modes are found to occur in drops with sizes smaller than a critical size ($\sim\hat{\rho}\hat{\nu}^2/T $). With the help of these calculations, many of the available experimental results are analyzed and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.