998 resultados para DYSTROPHIN EXPRESSION
Resumo:
Background information. DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4,6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.
Resumo:
Ten females presenting with muscle weakness and a raised serum creatine kinase revealed abnormalities in the expression of dystrophin in their muscle biopsies and were diagnosed as manifesting carriers of Xp21 Duchenne/Becker muscular dystrophy. Seven cases, aged 3-22 yr at the time of biopsy, had a variable proportion of dystrophin-deficient fibres and an abnormal expression on immunoblot. These were confidently diagnosed as manifesting carriers. Results in the remaining three cases, aged 8-10 yr, were less clear-cut. Dystrophin expression on immunoblots was slightly reduced and some unevenness and reduction of immunolabelling was seen on sections, but dystrophin-deficient fibres were not a feature of these cases. The weakness in the ten carriers ranged from minimal to severe and there was no correlation between the degree of weakness and the number of dystrophin-deficient fibres. Two minimally weak girls had a high proportion of dystrophin-deficient fibres. Our results show that analysis of dystrophin expression is useful for the differential diagnosis of carriers of Xp21 dystrophy and autosomal muscular dystrophy, but that dystrophin expression does not correlate directly with the degree of clinical weakness.
Resumo:
Chimeric RNA/DNA oligonucleotides (“chimeraplasts”) have been shown to induce single base alterations in genomic DNA both in vitro and in vivo. The mdx mouse strain has a point mutation in the dystrophin gene, the consequence of which is a muscular dystrophy resulting from deficiency of the dystrophin protein in skeletal muscle. To test the feasibility of chimeraplast-mediated gene therapy for muscular dystrophies, we used a chimeraplast (designated “MDX1”) designed to correct the point mutation in the dystrophin gene in mdx mice. After direct injection of MDX1 into muscles of mdx mice, immunohistochemical analysis revealed dystrophin-positive fibers clustered around the injection site. Two weeks after single injections into tibialis anterior muscles, the maximum number of dystrophin-positive fibers (approximately 30) in any muscle represented 1–2% of the total number of fibers in that muscle. Ten weeks after single injections, the range of the number of dystrophin-positive fibers was similar to that seen after 2 wk, suggesting that the expression was stable, as would be predicted for a gene-conversion event. Staining with exon-specific antibodies showed that none of these were “revertant fibers.” Furthermore, dystrophin from MDX1-injected muscles was full length by immunoblot analysis. No dystrophin was detectable by immunohistochemical or immunoblot analysis after control chimeraplast injections. Finally, reverse transcription–PCR analysis demonstrated the presence of transcripts with the wild-type dystrophin sequence only in mdx muscles injected with MDX1 chimeraplasts. These results provide the foundation for further studies of chimeraplast-mediated gene therapy as a therapeutic approach to muscular dystrophies and other genetic disorders of muscle.
Resumo:
Evidence from our laboratory has shown alterations in myocardial structure in severe sepsis/septic shock. The morphological alterations are heralded by sarcolemmal damage, characterized by increased plasma membrane permeability caused by oxidative damage to lipids and proteins. The critical importance of the dystrophin-glycoprotein complex (DGC) in maintaining sarcolemmal stability led us to hypothesize that loss of dystrophin and associated glycoproteins could be involved in early increased sarcolemmal permeability in experimentally induced septic cardiomyopathy. Male C57Bl/6 mice were subjected to sham operation and moderate (MSI) or severe (SSI) septic injury induced by cecal ligation and puncture (CLP). Using western blot and immunofluorescence, a downregulation of dystrophin and beta-dystroglycan expression in both severe and moderate injury could be observed in septic hearts. The immunofluorescent and protein amount expressions of laminin-alpha 2 were similar in SSI and sham-operated hearts. Consonantly, the evaluation of plasma membrane permeability by intracellular albumin staining provided evidence of severe injury of the sarcolemma in SSI hearts, whereas antioxidant treatment significantly attenuated the loss of sarcolemmal dystrophin expression and the increased membrane permeability. This study offers novel and mechanistic data to clarify subcellular events in the pathogenesis of cardiac dysfunction in severe sepsis. The main finding was that severe sepsis leads to a marked reduction in membrane localization of dystrophin and beta-dystroglycan in septic cardiomyocytes, a process that may constitute a structural basis of sepsis-induced cardiac depression. In addition, increased sarcolemmal permeability suggests functional impairment of the DGC complex in cardiac myofibers. In vivo observation that antioxidant treatment significantly abrogated the loss of dystrophin expression and plasma membrane increased permeability supports the hypothesis that oxidative damage may mediate the loss of dystrophin and beta-dystroglycan in septic mice. These abnormal parameters emerge as therapeutic targets and their modulation may provide beneficial effects on future cardiovascular outcomes and mortality in sepsis. Laboratory Investigation (2010) 90, 531-542; doi: 10.1038/labinvest.2010.3; published online 8 February 2010
Resumo:
Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.
Resumo:
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, was studied in needle biopsy samples taken from the quadriceps muscle of 15 asymptomatic carriers of DMD (13 adults and 2 young girls) and one symptomatic adult carrier. Antibodies to N- and C-terminal regions of dystrophin were used for both Western blot analysis and immunocytochemistry and a monoclonal antibody to beta-spectrin used to assess membrane integrity. All asymptomatic adult carriers showed some abnormality in dystrophin immunostaining but very few negative fibres were present. A clear mosaic of dystrophin positive and negative fibres was seen only in the adult symptomatic carrier and the two young girls. On a Western blot, all carriers studied had dystrophin of normal molecular weight, but most had reduced abundance. In adult carriers, the amount of dystrophin relative to normal controls varied, but it was unrelated to age, serum creatine kinase (CK) levels or to the degree of pathology. Carriers with normal CK showed abnormalities in dystrophin expression. The dystrophin immunoblotting profile of the 2 young girls was very similar to that of their mothers, but the mosaic pattern of immunostaining was not apparent in the older carriers. In conclusion, dystrophin immunostaining and Western blot analysis of biopsy samples from asymptomatic carriers is often abnormal and they may be useful additional aids for establishing carrier status, particularly in younger girls.
Resumo:
Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, alpha 1-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
Dystrophin mediates a physical link between the cytoskeleton of muscle fibers and the extracellular matrix, and its absence leads to muscle degeneration and dystrophy. In this article, we show that the lack of dystrophin affects the elasticity of individual fibers within muscle tissue explants, as probed using atomic force microscopy (AFM), providing a sensitive and quantitative description of the properties of normal and dystrophic myofibers. The rescue of dystrophin expression by exon skipping or by the ectopic expression of the utrophin analogue normalized the elasticity of dystrophic muscles, and these effects were commensurate to the functional recovery of whole muscle strength. However, a more homogeneous and widespread restoration of normal elasticity was obtained by the exon-skipping approach when comparing individual myofibers. AFM may thus provide a quantification of the functional benefit of gene therapies from live tissues coupled to single-cell resolution.
Resumo:
La dystrophie musculaire de Duchenne (DMD) est une maladie très sévère, progressive et sans traitement vraiment efficace. Elle est caractérisée par l’absence fonctionnelle de la dystrophine, une protéine essentielle au maintien des muscles squelettiques. La thérapie génique est actuellement envisagée comme approche thérapeutique pour livrer la dystrophine dans les muscles. Les vecteurs adénoviraux de troisième génération (Helper-dependent adenoviral vector, HD) sont des véhicules de transfert génique très prometteurs pour traiter la DMD. Puisque les gènes adénoviraux ont été enlevés complètement du HD, ils sont peu toxiques, faiblement immunogéniques et ils possèdent un espace cargo suffisant pour transporter l’ADN codant complet de la dystrophine. Bien que le HD puisse fournir la dystrophine de façon thérapeutique chez des souris dystrophiques (mdx), l’expression du gène thérapeutique est progressivement perdue plusieurs mois suivant l’injection intramusculaire. Deux stratégies innovantes furent explorées dans cette thèse dans le but de stabiliser l’expression de la dystrophine. La première stratégie vise à l’intégration de l’ADN du HD dans les chromosomes cellulaires, ce qui pourrait le protéger contre son élimination progressive des muscles. Une intégrase site-spécifique issue du phage ΦC31 a été utilisée pour catalyser l’intégration d’un HD transportant un marqueur de sélection. Dans les cellules humaines et les myoblastes murins, l’activité de l’intégrase a été évaluée d’après son efficacité d’intégration (après sélection) et sa spécificité (dans les clones résistants). L’efficacité atteint jusqu’à 0,5 % par cellule et jusqu’à 76 % des événements d’intégration ont été réalisés de façon site-spécifique. Bien que des délétions aient été trouvées aux extrémités du vecteur, 70 % des clones analysés montraient une seule copie du vecteur intégré (le nombre attendu). Seulement une petite augmentation du nombre de brisures double-brin a été mesurée dans les myoblastes exprimant l’intégrase. En conclusion, l’intégration du HD est relativement efficace, spécifique et sécuritaire. Cette méthode est très prometteuse, car la dystrophine peut être livrée dans le muscle avec l’aide du HD et l’intégration de l’ADN du HD pourrait stabiliser son expression in vivo. La deuxième stratégie implique l’utilisation d’un nouveau promoteur musculospécifique (ΔUSEx3) pour réduire la toxicité induite liée à une expression trop étendue de la dystrophine. Dans cette étude, nous avons investigué l’effet du contexte viral sur l’activité du promoteur. Un HD et un vecteur lentiviral (LV) ont été construits avec le promoteur ΔUSEx3 pour contrôler l’expression d’un gène rapporteur. Les résultats démontrent que ΔUSEx3 confère une expression puissante, musculospécifique et stable (via le LV) in vitro. L’injection intramusculaire du HD a conduit à une expression puissante du transgène. Ces résultats contrastent avec ceux du LV, car après l’injection de ce dernier, l’expression était faible. La livraison du HD dans le muscle, mais aussi dans plusieurs organes démontre la musculospécificité de ΔUSEx3. Par conséquent, le contexte du vecteur et l’environnement musculaire modulent tous les deux l’activité de ΔUSEx3. Bien que ΔUSEx3 soit musculospécifique, d’autres études sont requises pour déterminer si le promoteur peut stabiliser l’expression de la dystrophine in vivo.
Resumo:
The cellular uptake of PMOs (phosphorodiamidate morpholino oligomers) can be enhanced by their conjugation to arginine-rich CPPs (cell-penetrating peptides). Here, we discuss our recent findings regarding (R-Ahx-R)(4)AhxB (Ahx is 6-aminohexanoic acid and B is beta-alanine) CPP-PMO conjugates in DMD (Duchenne muscular dystrophy) and murine coronavirus research. An (R-Ahx-R)(4)AhxB-PMO conjugate was the most effective compound in inducing the correction of mutant dystrophin transcripts in myoblasts derived from a canine model of DMD. Similarly, normal levels of dystrophin expression were restored in the diaphragms of mdx mice, with treatment starting at the neonatal stage, and protein was still detecTable 22 weeks after the last dose of an (R-Ahx-R)(4)AhxB-PMO conjugate. Effects of length, linkage and carbohydrate modification of this CPP on the delivery of a PMO were investigated in a coronavirus mouse model. An (R-Ahx-R)(4)AhxB-PMO conjugate effectively inhibited viral replication, in comparison with other peptides conjugated to the same PMO. Shortening the CPP length, modifying it with a mannosylated serine moiety or replacing it with the R(9)F(2) CPP significantly decreased the efficacy of the resulting PPMO (CPP-PMO conjugate). We attribute the success of this CPP to its stability in serum and its capacity to transport PMO to RNA targets in a manner superior to that of poly-arginine CPPs.
Resumo:
The administration of antisense oligonucleotides (AOs) to skip one or more exons in mutated forms of the DMD gene and so restore the reading frame of the transcript is one of the most promising approaches to treat Duchenne muscular dystrophy (DMD). At present, preclinical studies demonstrating the efficacy and safety of long-term AO administration have not been conducted. Furthermore, it is essential to determine the minimal effective dose and frequency of administration. In this study, two different low doses (LDs) of phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 in the mdx dystrophic mouse were administered for up to 12 months. Mice treated for 50 weeks showed a substantial dose-related amelioration of the pathology, particularly in the diaphragm. Moreover, the generalized physical activity was profoundly enhanced compared to untreated mdx mice showing that widespread, albeit partial, dystrophin expression restores the normal activity in mdx mice. Our results show for the first time that a chronic long-term administration of LDs of unmodified PMO, equivalent to doses in use in DMD boys, is safe, significantly ameliorates the muscular dystrophic phenotype and improves the activity of dystrophin-deficient mice, thus encouraging the further clinical translation of this approach in humans.
Resumo:
A bill allowing researches with human embryonic stem cells has been approved by the Brazilian Congress, originally in 2005 and definitively by the Supreme Court in 2008. However, several years before, investigations in Brazil with adult stem cells in vitro in animal models as well as clinical trials, were started and are currently underway. Here, we will summarize the main findings and the challenges of going from bench to bed, focusing on heart, diabetes, cancer, craniofacial, and neuromuscular disorders. We also call attention to the importance of publishing negative results on experimental trials in scientific journals and websites. They are of great value to investigators in the field and may avoid the repeating of unsuccessful experiments. In addition, they could be referred to patients seeking information, aiming to protect them against financial and psychological harm.
Resumo:
Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.