993 resultados para DNA loading


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Methylation of cytosine residues at CpG sites is involved in various biological processes to control gene regulation and gene expression. Global DNA methylation is changed in different tumors and in cloned animals. Global DNA methylation can be accurately quantified by dot blot analysis with infrared (IR) fluorophores. Methylated lambda DNA was used as model DNA to develop and validate an immunochemical assay with IR fluorescence detection. Two different IR fluorophores were used, one to detect 5-methylcytosine and another to account for DNA loading. A sensitive infrared detection method was established which is suitable for accurate and reproducible quantification of global DNA methylation across a wide dynamic range. This method was subsequently employed to quantify global DNA methylation in liver and in muscle tissues of boars which have received either a control diet or a methyl supplemented diet in an ongoing study. A significant difference in global DNA methylation is indicated in muscle but not in liver tissue between the two groups of boars.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed cationic liposomes containing DNA through a conventional process involving steps of (i) preformation of liposomes, (ii) extrusion, (iii) drying and rehydration and (iv) DNA complexation. Owing to its high prophylactic potentiality against tuberculosis, which had already been demonstrated in preclinical assays, we introduced modifications into the conventional process towards getting a simpler and more economical process for further scale-up. Elimination of the extrusion step, increasing the lipid concentration (from 16 to 64 mM) of the preformed liposomes and using good manufacturing practice bulk lipids (96-98% purity) instead of analytical grade purity lipids (99.9-100%) were the modifications studied. The differences in the physico-chemical properties, such as average diameter, zeta potential, melting point and morphology of the liposomes prepared through the modified process, were not as significant for the biological properties, such as DNA loading on the cationic liposomes, and effective immune response in mice after immunisation as the control liposomes prepared through the conventional process. Beneficially, the modified process increased productivity by 22% and reduced the cost of raw material by 75%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methods which disperse single-walled carbon nanotubes (SWNTs) in water as `debundled', while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol(+)) {Cholest-5en-3 beta-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3 beta-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3 beta-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3 beta-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol(+)) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol(+) to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol(+) suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol(+) complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol(+) formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The replication system of bacteriophage T4 uses a trimeric ring-shaped processivity clamp (gp45) to tether the replication polymerase (gp43) to the template-primer DNA. This ring is placed onto the DNA by an ATPase-driven clamp-loading complex (gp44/62) where it then transfers, in closed form, to the polymerase. It generally has been assumed that one of the functions of the loading machinery is to open the clamp to place it around the DNA. However, the mechanism by which this occurs has not been fully defined. In this study we design and characterize a double-mutant gp45 protein that contains pairs of cysteine residues located at each monomer-monomer interface of the trimeric clamp. This mutant protein is functionally equivalent to wild-type gp45. However, when all three monomer-monomer interfaces are tethered by covalent crosslinks formed (reversibly or irreversibly) between the cysteine pairs these closed clamps can no longer be loaded onto the DNA nor onto the polymerase, effectively eliminating processive strand-displacement DNA synthesis. Analysis of the individual steps of the clamp-loading process shows that the ATPase-dependent interactions between the clamp and the clamp loader that precede DNA binding are hyperstimulated by the covalently crosslinked ring, suggesting that binding of the closed ring induces a futile, ATP-driven, ring-opening cycle. These findings and others permit further characterization and ordering of the steps involved in the T4 clamp-loading process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular 'switch' regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homologous recombination repair (HRR) is required for both the repair of DNA double strand breaks (DSBs) and the maintenance of the integrity of DNA replication forks. To determine the effect of a mutant allele of the RAD51 paralog XRCC2 (342delT) found in an HRR-defective tumour cell line, 342delT was introduced into HRR proficient cells containing a recombination reporter substrate. In one set of transfectants, expression of 342delT conferred sensitivity to thymidine and mitomycin C and suppressed HRR induced at the recombination reporter by thymidine but not by DSBs. In a second set of transfectants, the expression of 342delT was accompanied by a decreased level of the full-length XRCC2. These cells were defective in the induction of HRR by either thymidine or DSBs. Thus 342delT suppresses recombination induced by thymidine in a dominant negative manner while recombination induced by DSBs appears to depend upon the level of XRCC2 as well as the expression of the mutant XRCC2 allele. These results suggest that HRR pathways responding to stalled replication forks or DSBs are genetically distinguishable. They further suggest a critical role for XRCC2 in HRR at replication forks, possibly in the loading of RAD51 onto gapped DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here a series of cholesterol based cationic lipid suspensions that solubilize single-walled carbon nanotubes (SWCNT) efficiently in water. Each cationic lipid formulation was characterized in terms of their energy minimized molecular structures, bilayer widths of the aggregates based on X-ray diffraction. Then these aggregates were investigated pertaining to their DNA binding and release efficiency, effect of CNT inclusion on the stability of cationic cholesterol lipid-DNA complexes, Zeta potential values and changes in the chiro-optical property of DNA, effect on Raman spectral shift and changes in morphology by SEM and AFM. Each cationic lipid formulation was optimized for the amount of SWCNT solubilized in water, lipid-DNA ratio, amount of the plasmid DNA that can be transfected and the effect on the cellular toxicity. The resulting SWCNT-lipid formulations were then used for in vitro transfection of pEGFP-C3 in A549 (human alveolar basal epithelial) cells and HeLa (human cervical cancer) cells. Advantageously, the CNT-loaded formulations confer an excellent transfection efficiency even in high percentages of blood serum and showed significantly better gene transfer efficiency compared to one of the potent, well-known commercial transfection reagent, Lipofectamine2000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G(2) phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G(2)/M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction-modification (R-M) systems in this bacterium creates a barrier against natural transformation by foreign DNA. Yet, mechanisms that protect incoming double-stranded DNA (dsDNA) from restriction enzymes are not well understood. A DNA-binding protein, DNA Processing Protein A (DprA) has been shown to facilitate natural transformation of several Gram-positive and Gram-negative bacteria by protecting incoming single-stranded DNA (ssDNA) and promoting RecA loading on it. However, in this study, we report that H. pylori DprA (HpDprA) binds not only ssDNA but also dsDNA thereby conferring protection to both from various exo-nucleases and Type II restriction enzymes. Here, we observed a stimulatory role of HpDprA in DNA methylation through physical interaction with methyltransferases. Thus, HpDprA displayed dual functional interaction with H. pylori R-M systems by not only inhibiting the restriction enzymes but also stimulating methyltransferases. These results indicate that HpDprA could be one of the factors that modulate the R-M barrier during inter-strain natural transformation in H. pylori.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new amino silica monolithic column was developed for DNA extraction in a miniaturized format. The monolithic column was prepared in situ by polymerization of tetraethoxysilane (TEOS) and N-(beta-aminoethyl)-gamma-aminopropylmethyldimethoxysilane (AEAPMDMS). DNA was loaded in 50 mM tris(hydroxylmethyl)aminomethane-EDTA buffer at pH 7.0 and eluted with 300 mM potassium phosphate solution at pH 10.0. Under optimal condition, a 6.0-cm monolithic column provided a capacity of 56 ng DNA with an extraction efficiency of 71 +/- 5.2% (X +/- RSD). When the amino silica monolithic column was applied to extract genomic DNA from the whole blood of crucian carp, an extraction efficiency of 52 +/- 5.6% (X +/- SD) was obtained by three extractions. Since the chaotropic-based sample loading and organic solvent wash steps were avoided in this procedure, the purified DNA was suitable for downstream processes such as PCR. This amino silica monolithic column was demonstrated to allow rapid and efficient DNA purification in microscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).