998 resultados para DNA integrity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reductions in DNA integrity, genome stability, and telomere length are strongly associated with the aging process, age-related diseases as well as the age-related loss of muscle mass. However, in people reaching an age far beyond their statistical life expectancy the prevalence of diseases, such as cancer, cardiovascular disease, diabetes or dementia, is much lower compared to “averagely” aged humans. These inverse observations in nonagenarians (90–99 years), centenarians (100–109 years) and super-centenarians (110 years and older) require a closer look into dynamics underlying DNA damage within the oldest old of our society. Available data indicate improved DNA repair and antioxidant defense mechanisms in “super old” humans, which are comparable with much younger cohorts. Partly as a result of these enhanced endogenous repair and protective mechanisms, the oldest old humans appear to cope better with risk factors for DNA damage over their lifetime compared to subjects whose lifespan coincides with the statistical life expectancy. This model is supported by study results demonstrating superior chromosomal stability, telomere dynamics and DNA integrity in “successful agers”. There is also compelling evidence suggesting that life-style related factors including regular physical activity, a well-balanced diet and minimized psycho-social stress can reduce DNA damage and improve chromosomal stability. The most conclusive picture that emerges from reviewing the literature is that reaching “super old” age appears to be primarily determined by hereditary/genetic factors, while a healthy lifestyle additionally contributes to achieving the individual maximum lifespan in humans. More research is required in this rapidly growing population of super old people. In particular, there is need for more comprehensive investigations including short- and long-term lifestyle interventions as well as investigations focusing on the mechanisms causing DNA damage, mutations, and telomere shortening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate effects of cryopreservation on sperm motility and DNA integrity. Design: Pre-cryopreservation and post-cryopreservation analysis of motility and DNA integrity of semen and prepared sperm samples. Setting: A hospital andrology laboratory. Patient(s): Forty men attending the Regional Fertility Centre, Belfast, Northern Ireland. Intervention(s): Each sample was divided, and an aliquot was frozen unprepared. Remaining aliquots were prepared by Percoll density centrifugation (95.0:47.5) or direct swim-up procedure and divided into aliquots to allow direct comparison of fresh and frozen semen and prepared sperm (frozen with or without the addition of seminal plasma) from the same ejaculate. Samples were frozen by static-phase vapor cooling and being plunged into liquid nitrogen. Thawing was carried out at room temperature. Main Outcome Measure(s): Sperm DNA integrity was determined using a modified alkaline single cell gel electrophoresis (comet) assay, and motility was determined using computer-assisted semen analysis. Result(s): Sperm frozen unprepared in seminal fluid appeared more resistant to freezing damage than frozen prepared sperm. Further improvements can be achieved by selecting out the subpopulation of sperm with best motility and DNA integrity and freezing these sperm in seminal plasma, making this the optimal procedure. Conclusion(s): Freezing sperm in seminal plasma improves postthaw motility and DNA integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryopreservation of human spermatozoa is extensively used in artifical insemination and IVF programmes. Despite various advances in cryopreservation methodology, the recovery rate of functional post thaw spermatozoa remains mediocre, with sperm motility being significantly decreased after freezing. The aim of this study was to investigate the effects of cryopreservation on both DNA integrity and morphology of spermatozoa from fertile and infertile men. Semen samples were obtained from 17 fertile men and 40 infertile men. All samples were prepared by discontinuous Percoll density centrifugation ( 95.0:47.5). Samples were divided into aliquots to allow direct comparison of fresh and frozen spermatozoa from the same ejaculate. Aliquots for cryopreservation were mixed with a commercial cryoprotectant and frozen by static phase vapour cooling before plunging into liquid nitrogen. Thawing was carried out slowly at room temperature. Sperm DNA integrity was determined using a modified alkaline single cell gel electrophoresis ( comet ) assay and sperm morphology analysed using the Tygerberg criteria. DNA of semen and prepared sperm from fertile men was found to be unaffected by cryopreservation. In marked contrast, spermatozoa from infertile men were significantly damaged by freeze- thawing. Cryopreservation had a detrimental effect on morphology of semen and prepared sperm from fertile and infertile men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been postulated that the R- and S-equol enantiomers have different biological properties given their different binding affinities for the estrogen receptor. S-(-)equol is produced via the bacterial conversion of the soy isoflavone daidzein in the gut. We have compared the biological effects of purified S-equol to that of racemic (R and S) equol on breast and prostate cancer cells of varying receptor status in vitro. Both racemic and S-equol inhibited the growth of the breast cancer cell line MDA-MB-231 (> or = 10 microM) and the prostate cancer cell lines LNCaP (> or = 5 microM) and LAPC-4 (> or = 2.5 microM). The compounds also showed equipotent effects in inhibiting the invasion of MDA-MB-231 and PC-3 cancer cells through matrigel. S-equol (1, 10, 30 microM) was unable to prevent DNA damage in MCF-7 or MCF-10A breast cells following exposure to 2-hydroxy-4-nonenal, menadione, or benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide. In contrast, racemic equol (10, 30 microM) prevented DNA damage in MCF-10A cells following exposure to 2-hydroxy-4-nonenal or menadione. These findings suggest that racemic equol has strong antigenotoxic activity in contrast to the purified S-equol enantiomer implicating the R-, rather than the S-enantiomer as being responsible for the antioxidant effects of equol, a finding that may have implications for the in vivo chemoprotective properties of equol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human DNA ligase III gene encodes both nuclear and mitochondrial proteins. Abundant evidence supports the conclusion that the nuclear DNA ligase III protein plays an essential role in both base excision repair and homologous recombination. However, the role of DNA ligase III protein in mitochondrial genome dynamics has been obscure. Human tumor-derived HT1080 cells were transfected with an antisense DNA ligase III expression vector and clones with diminished levels of DNA ligase III activity identified. Mitochondrial protein extracts prepared from these clones had decreased levels of DNA ligase III relative to extracts from cells transfected with a control vector. Analysis of these clones revealed that the DNA ligase III antisense mRNA-expressing cells had reduced mtDNA content compared to control cells. In addition, the residual mtDNA present in these cells had numerous single-strand nicks that were not detected in mtDNA from control cells. Cells expressing antisense ligase III also had diminished capacity to restore their mtDNA to pre-irradiation levels following exposure to γ-irradiation. An antisense-mediated reduction in cellular DNA ligase IV had no effect on the copy number or integrity of mtDNA. This observaion, coupled with other evidence, suggests that DNA ligase IV is not present in the mitochondria and does not play a role in maintaining mtDNA integrity. We conclude that DNA ligase III is essential for the proper maintenance of mtDNA in cultured mammalian somatic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. Objective: To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. Materials and Methods: In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham’s F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). Results: After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (P<0.05). However, after 70 days, the rate of sperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB+ and CMA3+) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB+ spermatozoa were increased in both normal dose and high dose groups. Conclusion: Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mucus surface layer of corals plays a number of integral roles in their overall health and fitness. This mucopolysaccharide coating serves as vehicle to capture food, a protective barrier against physical invasions and trauma, and serves as a medium to host a community of microorganisms distinct from the surrounding seawater. In healthy corals the associated microbial communities are known to provide antibiotics that contribute to the coral’s innate immunity and function metabolic activities such as biogeochemical cycling. Culture-dependent (Ducklow and Mitchell, 1979; Ritchie, 2006) and culture-independent methods (Rohwer, et al., 2001; Rohwer et al., 2002; Sekar et al., 2006; Hansson et al., 2009; Kellogg et al., 2009) have shown that coral mucus-associated microbial communities can change with changes in the environment and health condition of the coral. These changes may suggest that changes in the microbial associates not only reflect health status but also may assist corals in acclimating to changing environmental conditions. With the increasing availability of molecular biology tools, culture-independent methods are being used more frequently for evaluating the health of the animal host. Although culture-independent methods are able to provide more in-depth insights into the constituents of the coral surface mucus layer’s microbial community, their reliability and reproducibility rely on the initial sample collection maintaining sample integrity. In general, a sample of mucus is collected from a coral colony, either by sterile syringe or swab method (Woodley, et al., 2008), and immediately placed in a cryovial. In the case of a syringe sample, the mucus is decanted into the cryovial and the sealed tube is immediately flash-frozen in a liquid nitrogen vapor shipper (a.k.a., dry shipper). Swabs with mucus are placed in a cryovial, and the end of the swab is broken off before sealing and placing the vial in the dry shipper. The samples are then sent to a laboratory for analysis. After the initial collection and preservation of the sample, the duration of the sample voyage to a recipient laboratory is often another critical part of the sampling process, as unanticipated delays may exceed the length of time a dry shipper can remain cold, or mishandling of the shipper can cause it to exhaust prematurely. In remote areas, service by international shipping companies may be non-existent, which requires the use of an alternative preservation medium. Other methods for preserving environmental samples for microbial DNA analysis include drying on various matrices (DNA cards, swabs), or placing samples in liquid preservatives (e.g., chloroform/phenol/isoamyl alcohol, TRIzol reagent, ethanol). These methodologies eliminate the need for cold storage, however, they add expense and permitting requirements for hazardous liquid components, and the retrieval of intact microbial DNA often can be inconsistent (Dawson, et al., 1998; Rissanen et al., 2010). A method to preserve coral mucus samples without cold storage or use of hazardous solvents, while maintaining microbial DNA integrity, would be an invaluable tool for coral biologists, especially those in remote areas. Saline-saturated dimethylsulfoxide-ethylenediaminetetraacetic acid (20% DMSO-0.25M EDTA, pH 8.0), or SSDE, is a solution that has been reported to be a means of storing tissue of marine invertebrates at ambient temperatures without significant loss of nucleic acid integrity (Dawson et al., 1998, Concepcion et al., 2007). While this methodology would be a facile and inexpensive way to transport coral tissue samples, it is unclear whether the coral microbiota DNA would be adversely affected by this storage medium either by degradation of the DNA, or a bias in the DNA recovered during the extraction process created by variations in extraction efficiencies among the various community members. Tests to determine the efficacy of SSDE as an ambient temperature storage medium for coral mucus samples are presented here.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exchange of histones with protamines in sperm DNA results in sperm chromatin compaction and protection. Variations in sperm protamine expression are associated with male infertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content (P1-DNA, P2-DNA, P1 + P2-DNA) or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates. During late spermatogenesis, around 85% of the histones in the sperm nucleus are replaced with protamines. This process results in sperm chromatin compaction and also transcription silencing. In the human, protamines are comprised of two types: protamine-1 (P1) and protamine-2 (P2). Variations in sperm protamine expression are associated with male infertility. Similarly, sperm DNA integrity is important for male fertility. The aim of this study was to investigate relationships between DNA fragmentation, sperm protamines and assisted reproduction treatment. Semen and spermatozoa prepared by density-gradient centrifugation (DGC) from 73 men undergoing IVF and 24 men undergoing intracytoplasmic sperm injection (ICSI) were included in the study. Nuclear DNA fragmentation was assessed using the alkaline Comet assay and protamines were separated by acid-urea polyacrylamide gels. Sperm DNA fragmentation and protamine content decreased in spermatozoa after DGC. Abnormally high and low P1/P2 ratios were associated with increased sperm DNA fragmentation. Couples with idiopathic infertility had abnormally high P1/P2 ratios. Fertilization rates and embryo quality decreased as sperm DNA fragmentation or protamines increased. Sperm DNA fragmentation was lower in couples achieving pregnancies after IVF, but not after ICSI. There was no correlation between protamine content or P1/P2 ratios and IVF or ICSI pregnancies. Increased sperm DNA fragmentation was associated with abnormal protamination and resulted in lower fertilization rates, poorer embryo quality and reduced pregnancy rates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Repair of both normal and reduced AP sites is activated by AP endonuclease, which recognizes and cleaves a phosphodiester bond 5' to the AP site. For a short period of time an incised AP site is occupied by poly(ADP-ribose) polymerase and then DNA polymerase beta adds one nucleotide into the repair gap and simultaneously removes the 5'-sugar phosphate. Finally, the DNA ligase III/XRCC1 complex accomplishes repair by sealing disrupted DNA ends. However, long-patch BER pathway, which is involved in the removal of reduced abasic sites, requires further DNA synthesis resulting in strand displacement and the generation of a damage-containing flap that is later removed by the flap endonuclease. Strand-displacement DNA synthesis is accomplished by DNA polymerase delta/epsilon and DNA ligase I restores DNA integrity. DNA synthesis by DNA polymerase delta/epsilon is dependent on proliferating cell nuclear antigen, which also stimulates the DNA ligase I and flap endonuclease. These repair events are supported by multiple protein-protein interactions. (C) 2003 Elsevier B.V. All rights reserved.