945 resultados para DNA extraction methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymptomatic Plasmodium infection is a new challenge for public health in the American region. The polymerase chain reaction (PCR) is the best method for diagnosing subpatent parasitemias. In endemic areas, blood collection is hampered by geographical distances and deficient transport and storage conditions of the samples. Because DNA extraction from blood collected on filter paper is an efficient method for molecular studies in high parasitemic individuals, we investigated whether the technique could be an alternative for Plasmodium diagnosis among asymptomatic and pauciparasitemic subjects. In this report we compared three different methods (Chelex®-saponin, methanol and TRIS-EDTA) of DNA extraction from blood collected on filter paper from asymptomatic Plasmodium-infected individuals. Polymerase chain reaction assays for detection of Plasmodium species showed the best results when the Chelex®-saponin method was used. Even though the sensitivity of detection was approximately 66% and 31% for P. falciparum and P. vivax, respectively, this method did not show the effectiveness in DNA extraction required for molecular diagnosis of Plasmodium. The development of better methods for extracting DNA from blood collected on filter paper is important for the diagnosis of subpatent malarial infections in remote areas and would contribute to establishing the epidemiology of this form of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are several methods to extract bacterial DNA based on different principles. However, the amount and the quality of the DNA obtained by each one of those methods is highly variable and microorganism dependent, as illustrated by coagulase-negative staphylococci (CoNS) which have a thick cell wall that is difficult to lyse. This study was designed to compare the quality and the amount of CoNS DNA, extracted by four different techniques: two in-house protocols and two commercial kits. DNA amount and quality determination was performed through spectrophotometry. The extracted DNA was also analyzed using agarose gel electrophoresis and by PCR. 267 isolates of CoNS were used in this study. The column method and thermal lyses showed better results with regard to DNA quality (mean ratio of A260/280 = 1.95) and average concentration of DNA (), respectively. All four methods tested provided appropriate DNA for PCR amplification, but with different yields. DNA quality is important since it allows the application of a large number of molecular biology techniques, and also it's storage for a longer period of time. In this sense the extraction method based on an extraction column presented the best results for CoNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA extraction is a critical step in Genetically Modified Organisms analysis based on real-time PCR. In this study, the CTAB and DNeasy methods provided good quality and quantity of DNA from the texturized soy protein, infant formula, and soy milk samples. Concerning the Certified Reference Material consisting of 5% Roundup Ready® soybean, neither method yielded DNA of good quality. However, the dilution test applied in the CTAB extracts showed no interference of inhibitory substances. The PCR efficiencies of lectin target amplification were not statistically different, and the coefficients of correlation (R²) demonstrated high degree of correlation between the copy numbers and the threshold cycle (Ct) values. ANOVA showed suitable adjustment of the regression and absence of significant linear deviations. The efficiencies of the p35S amplification were not statistically different, and all R² values using DNeasy extracts were above 0.98 with no significant linear deviations. Two out of three R² values using CTAB extracts were lower than 0.98, corresponding to lower degree of correlation, and the lack-of-fit test showed significant linear deviation in one run. The comparative analysis of the Ct values for the p35S and lectin targets demonstrated no statistical significant differences between the analytical curves of each target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Polymerase chain reaction (PCR) may offer an alternative diagnostic option when clinical signs and symptoms suggest visceral leishmaniasis (VL) but microscopic scanning and serological tests provide negative results. PCR using urine is sensitive enough to diagnose human visceral leishmaniasis (VL). However, DNA quality is a crucial factor for successful amplification. Methods A comparative performance evaluation of DNA extraction methods from the urine of patients with VL using two commercially available extraction kits and two phenol-chloroform protocols was conducted to determine which method produces the highest quality DNA suitable for PCR amplification, as well as the most sensitive, fast and inexpensive method. All commercially available kits were able to shorten the duration of DNA extraction. Results With regard to detection limits, both phenol: chloroform extraction and the QIAamp DNA Mini Kit provided good results (0.1 pg of DNA) for the extraction of DNA from a parasite smaller than Leishmania (Leishmania) infantum (< 100fg of DNA). However, among 11 urine samples from subjects with VL, better performance was achieved with the phenol:chloroform method (8/11) relative to the QIAamp DNA Mini Kit (4/11), with a greater number of positive samples detected at a lower cost using PCR. Conclusion Our results demonstrate that phenol:chloroform with an ethanol precipitation prior to extraction is the most efficient method in terms of yield and cost, using urine as a non-invasive source of DNA and providing an alternative diagnostic method at a low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: INTRODUCTION : Molecular analyses are auxiliary tools for detecting Koch's bacilli in clinical specimens from patients with suspected tuberculosis (TB). However, there are still no efficient diagnostic tests that combine high sensitivity and specificity and yield rapid results in the detection of TB. This study evaluated single-tube nested polymerase chain reaction (STNPCR) as a molecular diagnostic test with low risk of cross contamination for detecting Mycobacterium tuberculosis in clinical samples. METHODS: Mycobacterium tuberculosis deoxyribonucleic acid (DNA) was detected in blood and urine samples by STNPCR followed by agarose gel electrophoresis. In this system, reaction tubes were not opened between the two stages of PCR (simple and nested). RESULTS: STNPCR demonstrated good accuracy in clinical samples with no cross contamination between microtubes. Sensitivity in blood and urine, analyzed in parallel, was 35%-62% for pulmonary and 41%-72% for extrapulmonary TB. The specificity of STNPCR was 100% in most analyses, depending on the type of clinical sample (blood or urine) and clinical form of disease (pulmonary or extrapulmonary). CONCLUSIONS: STNPCR was effective in detecting TB, especially the extrapulmonary form for which sensitivity was higher, and had the advantage of less invasive sample collection from patients for whom a spontaneous sputum sample was unavailable. With low risk of cross contamination, the STNPCR can be used as an adjunct to conventional methods for diagnosing TB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Functional genomic analyses require intact RNA; however, Passiflora edulis leaves are rich in secondary metabolites that interfere with RNA extraction primarily by promoting oxidative processes and by precipitating with nucleic acids. This study aimed to analyse three RNA extraction methods, Concert™ Plant RNA Reagent (Invitrogen, Carlsbad, CA, USA), TRIzol® Reagent (Invitrogen) and TRIzol® Reagent (Invitrogen)/ice -commercial products specifically designed to extract RNA, and to determine which method is the most effective for extracting RNA from the leaves of passion fruit plants. In contrast to the RNA extracted using the other 2 methods, the RNA extracted using TRIzol® Reagent (Invitrogen) did not have acceptable A260/A280 and A260/A230 ratios and did not have ideal concentrations. Agarose gel electrophoresis showed a strong DNA band for all of the Concert™ method extractions but not for the TRIzol® and TRIzol®/ice methods. The TRIzol® method resulted in smears during electrophoresis. Due to its low levels of DNA contamination, ideal A260/A280 and A260/A230 ratios and superior sample integrity, RNA from the TRIzol®/ice method was used for reverse transcription-polymerase chain reaction (RT-PCR), and the resulting amplicons were highly similar. We conclude that TRIzol®/ice is the preferred method for RNA extraction for P. edulis leaves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to develop a simplified low cost method for the collection and fixation of pediatric autopsy cells and to determine the quantitative and qualitative adequacy of extracted DNA. Touch and scrape preparations of pediatric liver cells were obtained from 15 cadavers at autopsy and fixed in 95% ethanol or 3:1 methanol:acetic acid. Material prepared by each fixation procedure was submitted to DNA extraction with the Wizard® genomic DNA purification kit for DNA quantification and five of the preparations were amplified by multiplex PCR (azoospermia factor genes). The amount of DNA extracted varied from 20 to 8,640 µg, with significant differences between fixation methods. Scrape preparation fixed in 95% ethanol provided larger amount of extracted DNA. However, the mean for all groups was higher than the quantity needed for PCR (50 ng) or Southern blot (500 ng). There were no qualitative differences among the different material and fixatives. The same results were also obtained for glass slides stored at room temperature for 6, 12, 18 and 24 months. We conclude that touch and scrape preparations fixed in 95% ethanol are a good source of DNA and present fewer limitations than cell culture, tissue paraffin embedding or freezing that require sterile material, culture medium, laboratory equipment and trained technicians. In addition, they are more practical and less labor intensive and can be obtained and stored for a long time at low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landfarm soils are employed in industrial and petrochemical residue bioremediation. This process induces selective pressure directed towards microorganisms capable of degrading toxic compounds. Detailed description of taxa in these environments is difficult due to a lack of knowledge of culture conditions required for unknown microorganisms. A metagenomic approach permits identification of organisms without the need for culture. However, a DNA extraction step is first required, which can bias taxonomic representativeness and interfere with cloning steps by extracting interference substances. We developed a simplified DNA extraction procedure coupled with metagenomic DNA amplification in an effort to overcome these limitations. The amplified sequences were used to generate a metagenomic data set and the taxonomic and functional representativeness were evaluated in comparison with a data set built with DNA extracted by conventional methods. The simplified and optimized method of RAPD to access metagenomic information provides better representativeness of the taxonomical and metabolic aspects of the environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. Methods: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. Results: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 104/ mL, 6.3 × 102/mL and 1.6 × 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 109/mL, 2.08 × 106/mL and 4.40 × 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 105/ mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples, Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. Conclusion: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA. © 2006 The WJG Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seafood products fraud, the misrepresentation of them, have been discovered all around the world in different forms as false labeling, species substitution, short-weighting or over glazing in order to hide the correct identity, origin or weight of the seafood products. Due to the value of seafood products such as canned tuna, swordfish or grouper, these species are the subject of the commercial fraud is mainly there placement of valuable species with other little or no value species. A similar situation occurs with the shelled shrimp or shellfish that are reduced into pieces for the commercialization. Food fraud by species substitution is an emerging risk given the increasingly global food supply chain and the potential food safety issues. Economic food fraud is committed when food is deliberately placed on the market, for financial gain deceiving consumers (Woolfe, M. & Primrose, S. 2004). As a result of the increased demand and the globalization of the seafood supply, more fish species are encountered in the market. In this scenary, it becomes essential to unequivocally identify the species. The traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa, amplified when fish, crustacean or shellfish are commercially transformed. Many fish species show a similar texture, thus the certification of fish products is particularly important when fishes have undergone procedures which affect the overall anatomical structure, such as heading, slicing or filleting (Marko et al., 2004). The absence of morphological traits, a main characteristic usually used to identify animal species, represents a challenge and molecular identification methods are required. Among them, DNA-based methods are more frequently employed for food authentication (Lockley & Bardsley, 2000). In addition to food authentication and traceability, studies of taxonomy, population and conservation genetics as well as analysis of dietary habits and prey selection, also rely on genetic analyses including the DNA barcoding technology (Arroyave & Stiassny, 2014; Galimberti et al., 2013; Mafra, Ferreira, & Oliveira, 2008; Nicolé et al., 2012; Rasmussen & Morrissey, 2008), consisting in PCR amplification and sequencing of a COI mitochondrial gene specific region. The system proposed by P. Hebert et al. (2003) locates inside the mitochondrial COI gene (cytochrome oxidase subunit I) the bioidentification system useful in taxonomic identification of species (Lo Brutto et al., 2007). The COI region, used for genetic identification - DNA barcode - is short enough to allow, with the current technology, to decode sequence (the pairs of nucleotide bases) in a single step. Despite, this region only represents a tiny fraction of the mitochondrial DNA content in each cell, the COI region has sufficient variability to distinguish the majority of species among them (Biondo et al. 2016). This technique has been already employed to address the demand of assessing the actual identity and/or provenance of marketed products, as well as to unmask mislabelling and fraudulent substitutions, difficult to detect especially in manufactured seafood (Barbuto et al., 2010; Galimberti et al., 2013; Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010). Nowadays,the research concerns the use of genetic markers to identify not only the species and/or varieties of fish, but also to identify molecular characters able to trace the origin and to provide an effective control tool forproducers and consumers as a supply chain in agreementwith local regulations.