999 resultados para DNA barcode


Relevância:

100.00% 100.00%

Publicador:

Resumo:

10th International Phycological Congress, Orlando, Florida, USA, 4-10 de agosto 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 +/- 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA barcoding facilitates the identification of species and the estimation of biodiversity by using nucleotide sequences, usually from the mitochondrial genome. Most studies accomplish this task by using the gene encoding cytochrome oxidase subunit I (COI; Entrez COX1). Within this barcoding framework, many taxonomic initiatives exist, such as those specializing in fishes, birds, mammals, and fungi. Other efforts center on regions, such as the Arctic, or on other topics, such as health. DNA barcoding initiatives exist for all groups of vertebrates except for amphibians and nonavian reptiles. We announce the formation of Cold Code, the international initiative to DNA barcode all species of these 'cold-blooded' vertebrates. The project has a Steering Committee, Coordinators, and a home page. To facilitate Cold Code, the Kunming Institute of Zoology, Chinese Academy of Sciences will sequence COI for the first 10 specimens of a species at no cost to the steward of the tissues. © 2012 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cladocera is an important group of freshwater zooplankton, and the species plays an important role in energy transfer and in aquatic food webs. Oxyurella longicaudis is a Chydoridae species that has been recorded in North and South America. The aim of this study is to investigate the life cycle aspects of parthenogenetic females of O. longicaudis cultured in laboratory under controlled conditions: temperature (23 degrees C +/- 05 degrees C), photoperiod (12 h light/12 h dark), food supply, and reconstituted water.Results: Embryonic development duration (2.3 +/- 0.5 days), post-embryonic development (5.2 +/- 0.69 days), mean fecundity (two eggs female(-1) brood(-1)), total egg production (22.55 +/- 3.98 eggs), average longevity (58 days), and body growth of the species were recorded. We also report the first DNA barcode for O. longicaudis isolated in Brazil, which will allow for easy identification in future zooplankton community studies. The analysis shows a genetic divergence of around 7% between our Brazilian isolate and O. longicaudis isolates from Mexico.Conclusions: The time of embryonic and post-embryonic development of O. longicaudis was higher than that of the other species of the same family, which contributed to lower total egg production throughout its life cycle. The genetic divergence appears to be sufficient to classify the two isolates as different species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mayflies (Ephemeroptera) are known to generally present a high degree of insular endemism: half of the 28 species known from Corsica and Sardinia are considered as endemic. We sequenced the DNA barcode (a fragment of the mitochondrial COI gene) of 349 specimens from 50 localities in Corsica, Sardinia, continental Europe and North Africa. We reconstructed gene trees of eight genera or species groups representing the main mayfly families. Alternative topologies were built to test if our reconstructions suggested a single or multiple Corsican/Sardinian colonization event(s) in each genus or species group. A molecular clock calibrated with different evolution rates was used to try to link speciation processes with geological events. Our results confirm the high degree of endemism of Corsican and Sardinian mayflies and the close relationship between these two faunas. Moreover, we have evidence that the mayfly diversity of the two islands is highly underestimated as at least six new putative species occur on the two islands. We demonstrated that the Corsican and Sardinian mayfly fauna reveals a complex history mainly related to geological events. The Messinian Salinity Crisis, which is thought to have reduced marine barriers, thus facilitating gene flow between insular and continental populations, was detected as the most important event in the speciation of most lineages. Vicariance processes related to the split and rotation of the Corso-Sardinian microplate had a minor impact as they involved only two genera with limited dispersal and ecological range. Colonization events posterior to the Messinian Salinity Crisis had only marginal effects as we had indication of recent gene flow only in two clades. With very limited recent gene flow and a high degree of endemism, mayflies from Corsica and Sardinia present all the criteria for conservation prioritization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The DNA barcode potential of three regions (the nuclear ribosomal ITS and the plastid psbA-trnH and trnT-trnL intergenic spacers) was investigated for the plant genus Aspalathus L. (Fabaceac: Crotalarieae). Aspalathus is a large genus (278 species) that revealed low levels of DNA variation in phylogenetic studies. In a 51-species dataset for the psbA-trnH and ITS regions, 45%, and 16% of sequences respectively were identical to the sequence of at least one other species, with two species undiscriminated even when the two regions were combined. In contrast, trnT-trnL, discriminated between all species in this dataset. In a larger ITS and trnT-trnL dataset. including a further 82 species. 7 species in five pairwise comparisons remained Undiscriminated when the two regions were combined. Four of the five pairs of species not discriminated by sequence data were readily distinguished using a combination of qualitative and quantitative morphological data. The difficulty of barcoding in this group is increased by the presence of intraspecific variation in all three regions studied. In the case of psbA-trnH, three intraspecific samples had a sequence identical to at least one other species. Overall, psbA-trnH. currently a candidate for plant barcoding, was the least discriminatory region in our study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species-level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79-87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra-individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species-level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)