985 resultados para DNA PUFF GENE
Resumo:
We extended the characterization of the DNA puff BhB10-1 gene of Bradysia hygida by showing that, although its mRNA is detected only at the end of the fourth larval instar, BhB10-1 expression is not restricted to the salivary gland, the tissue in which this gene is amplified. Different amounts of BhB10-1 mRNA were detected in other larval tissues such as gut, Malpighian tubules, fat body, brain and cuticle, suggesting that this gene is expressed differentially in the various tissues analyzed. Analysis of transgenic Drosophila carrying the BhB10-1 transcription unit and flanking sequences revealed that the tested fragment promotes transcription in a constitutive manner. We suggest that either cis-regulatory elements are missing in the transgene or factors that temporally regulate the BhB10-1 gene in B. hygida are not conserved in Drosophila.
Resumo:
When the first group of DNA puffs is active in the salivary gland regions S1 and S3 of Bradysia hygida larvae, there is a large increase in the production and secretion of new salivary proteins demonstrable by [3H]-Leu incorporation. The present study shows that protein separation by SDS-PAGE and detection by fluorography demonstrated that these polypeptides range in molecular mass from about 23 to 100 kDa. Furthermore, these proteins were synthesized mainly in the S1 and S3 salivary gland regions where the DNA puffs C7, C5, C4 and B10 are conspicuous, while in the S2 region protein synthesis was very low. Others have shown that the extent of amplification for DNA sequences that code for mRNA in the DNA puffs C4 and B10 was about 22 and 10 times, respectively. The present data for this group of DNA puffs are consistent with the proposition that gene amplification is necessary to provide some cells with additional gene copies for the production of massive amounts of proteins within a short period of time (Spradling AC and Mahowald AP (1980) Proceedings of the National Academy of Sciences, USA, 77: 1096-1100).
Resumo:
DNA puffs are genomic regions of polytene chromosomes that undergo developmentally controlled DNA amplification and transcription in salivary glands of sciarid flies. Here, we tested the hypothesis that DNA puff genes code for salivary proteins in Trichosia pubescens. To do that, we generated antibodies against saliva and immunoscreened a cDNA library made from salivary glands. We isolated clones corresponding to DNA puff regions, including clone D-50 that contained the entire coding sequence of the previously isolated C4B1 gene from puff 4C. Indeed, we showed that puff 4C is a DNA puff region detecting its local transcription and its extra rounds of DNA incorporation compared to neighboring regions. We further confirmed D-50 clone identity in Western blots reacted with the anti-saliva anitiserum. We detected a recombinant protein expressed by this clone that had the expected size for a full-length product of the gene. We end with a discussion of the relationship between DNA puff genes and their products.
Resumo:
The aim of this study was to evaluate the frequency of polymorphisms in the TYMS, XRCC1, and ERCC2 DNA repair genes in pediatric patients with acute lymphoblastic leukemia using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) approaches. The study was conducted in 206 patients and 364 controls from a Brazilian population. No significant differences were observed among the analyzed groups regarding XRCC1 codon 399 and codon 194 and ERCC2 codon 751 and codon 312 polymorphisms. The TYMS 3R variant allele was significantly associated with a reduced risk of childhood ALL, represented by the sum of heterozygous and polymorphic homozygous genotypes (odds ratio 0.60; 95% confidence interval 0.37-0.99). The results suggest that polymorphism in TYMS may play a protective role against the development of childhood ALL.
Resumo:
The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease.
Resumo:
Epigenetic silencing of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) by promoter methylation predicts successful alkylating agent therapy, such as with temozolomide, in glioblastoma patients. Stratified therapy assignment of patients in prospective clinical trials according to tumor MGMT status requires a standardized diagnostic test, suitable for high-throughput analysis of small amounts of formalin-fixed, paraffin-embedded tumor tissue. A direct, real-time methylation-specific PCR (MSP) assay was developed to determine methylation status of the MGMT gene promoter. Assay specificity was obtained by selective amplification of methylated DNA sequences of sodium bisulfite-modified DNA. The copy number of the methylated MGMT promoter, normalized to the beta-actin gene, provides a quantitative test result. We analyzed 134 clinical glioma samples, comparing the new test with the previously validated nested gel-based MSP assay, which yields a binary readout. A cut-off value for the MGMT methylation status was suggested by fitting a bimodal normal mixture model to the real-time results, supporting the hypothesis that there are two distinct populations within the test samples. Comparison of the tests showed high concordance of the results (82/91 [90%]; Cohen's kappa = 0.80; 95% confidence interval, 0.82-0.95). The direct, real-time MSP assay was highly reproducible (Pearson correlation 0.996) and showed valid test results for 93% (125/134) of samples compared with 75% (94/125) for the nested, gel-based MSP assay. This high-throughput test provides an important pharmacogenomic tool for individualized management of alkylating agent chemotherapy.
Resumo:
Les sites apuriniques/apyrimidinique (AP) représentent une forme de dommage à l’ADN hautement mutagène et ce type de dommage peut survenir spontanément ou être induit par une variété d’agents. Afin de préserver la stabilité génomique, deux familles d’endonucléases de type AP, endo-IV et exo-III, sont nécessaires pour contrecarrer les effets mutagènes des sites AP. Malgré l’identification de membres des deux familles dans plusieurs organismes unicellulaire tels que E.coli et S. cerevisiae, aucun membre de la famille endo-IV n’a été identifié chez les organismes multicellulaires à l’exception de C. elegans et de C. briggsae. Nous avons donc décidé d’investiguer l’importance biologique de APN-1 chez C. elegans par l’utilisation d’une approche de knockdown du gène. Dans notre étude, nous avons montré que le knockdown du gène apn-1 chez C. elegans, en utilisant des ARN d’interférence (ARNi), cause une accumulation de mutations spontanées et induites par des drogues résultant en un délai de l’éclosion des œufs ainsi que par une diminution de la survie et de la longévité des vers adultes. De plus, nous avons montré que cette accumulation de mutations mène à un délai dans la progression du cycle cellulaire durant l’embryogénèse, représentant possiblement une explication du délai dans l’éclosion des œufs. Nous avons montré qu’il y avait une augmentation du niveau de mutations dans la gorge des vers, sans toutefois pouvoir confirmer la distribution de APN-1 qui possède une étiquette GFP. Les animaux transgéniques APN-1-GFP n’exprimaient pas suffisamment de la protéine de fusion pour permettre une visualisation à l’aide d’un microscope à fluorescence, mais la protéine a été détectée par immunobuvardage de type western. Les animaux transgéniques APN-1-GFP étaient instables et avaient des phénotypes concordants avec les défauts génétiques. En conclusion, il semble que C. elegans aie évolué afin de retenir un niveau de base de APN-1 jouant ainsi un rôle versatile afin de maintenir l’intégrité génétique d’autant plus que cet organisme semble manquer plusieurs enzymes de la voie de réparation par excision de base.
Resumo:
Background: Atherosclerotic coronary artery disease (CAD) is a multifactorial process that appears to be caused by the interaction of environmental risk factors with multiple predisposing genes. It is nowadays accepted that increased levels of DNA damage induced by xenobiotics play an important role in the early phases of atherogenesis. Therefore, in this study, we focus on determining whether genetic variations in xenobiotic-metabolizing [glutathione-S-transferase theta 1 (GSTT1), glutathione-S-transferase mu 1 (GSTM1), cytochrome P450 IIEI (CYP2E1)] and DNA repair [X-ray cross-complementing group 1 (XRCC1)] genes might be associated with increased risk for CAD. Methods: A case-control study was conducted with 400 individuals who underwent subjected to coronary angiography. A total of 299 were patients diagnosed with effective coronary atherosclerosis (case group; >20% obstructive lesion), and 101 (control group) were individuals diagnosed as negative for CAD (<20% obstructive lesions). The polymorphism identifications for GSTM1 and GSTT1, and for CYP2E1 and XRCC1 genes were performed by polymerase chain reaction (PCR) amplification and by PCR-RFLP, respectively. Results and conclusions: The XRCC1 homozygous wild-type genotype Arg/Arg for codon 399 was statistically less pronounced in the case subjects (21.4%) than in controls (38.5%); individuals with the variant XRCC1 genotype had a 2.3-fold increased risk for coronary atherosclerosis than individuals with the wild-type genotype (OR=2.3, 95% CI=1.13-4.69). Conversely, no association between GSTM1, GSTT1, and CYP2E1gene polymorphisms and coronary atherosclerosis was detected. The results provide evidence of the role of DNA damage and repair in cardiovascular disease. © 2011 Elsevier Inc. All rights reserved.
Resumo:
The gene XRCC3 (X-ray cross complementing group 3) has the task of repairing damage that occurs when there is recombination between homologous chromosomes. Repair of recombination between homologous chromosomes plays an important role in maintaining genome integrity, although it is known that double-strand breaks are the main inducers of chromosomal aberrations. Changes in the XRCC3 protein lead to an increase in errors in chromosome segregation due to defects in centrosomes, resulting in aneuploidy and other chromosomal aberrations, such as small increases in telomeres. We examined XRCC3 Thr241Met polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. The individuals of the control group (N = 100) were selected from the general population of the Sao Paulo State. Odds ratio and 95%CI were calculated using a logistic regression model. Patients who had the allele Met of the XRCC3 Thr241Met polymorphism had a significantly increased risk of tumor development (odds ratio = 3.13; 95% confidence interval = 1.50-6.50). There were no significant differences in overall survival of patients. We suggest that XRCC3 Thr241Met polymorphism is involved in susceptibility for developing astrocytomas and glioblastomas.
Resumo:
Aims: To evaluate the associations of excision repair cross complementing-group 1 (ERCC1) (DNA repair protein) (G19007A) polymorphism, methylation and immunohistochemical expression with epidemiological and clinicopathological factors and with overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Methods and results: The study group comprised 84 patients with HNSCC who underwent surgery and adjuvant radiotherapy without chemotherapy. Bivariate and multivariate analyses were used. The allele A genotype variant was observed in 79.8% of the samples, GG in 20.2%, GA in 28.6% and AA in 51.2%. Individuals aged more than 45 years had a higher prevalence of the allelic A variant and a high (83.3%) immunohistochemical expression of ERCC1 protein [odds ratio (OR) = 4.86, 95% confidence interval (CI): 1.2-19.7, P = 0.027], which was also high in patients with advanced stage (OR= 5.04, 95% CI: 1.07-23.7, P = 0.041). Methylated status was found in 51.2% of the samples, and was higher in patients who did not present distant metastasis (OR = 6.67, 95% CI: 1.40-33.33, P = 0.019) and in patients with advanced stage (OR = 5.04, 95% CI: 1.07-23.7, P = 0.041). At 2 and 5 years, overall survival was 55% and 36%, respectively (median = 30 months). Conclusion: Our findings may reflect a high rate of DNA repair due to frequent tissue injury during the lifetime of these individuals, and also more advanced disease presentation in this population with worse prognosis.
Resumo:
Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.
Resumo:
DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.
Resumo:
The OGG1 gene encodes a highly conserved DNA glycosylase that repairs oxidized guanines in DNA. We have investigated the in vivo function of the Ogg1 protein in yeast mitochondria. We demonstrate that inactivation of ogg1 leads to at least a 2-fold increase in production of spontaneous mitochondrial mutants compared with wild-type. Using green fluorescent protein (GFP) we show that a GFP–Ogg1 fusion protein is transported to mitochondria. However, deletion of the first 11 amino acids from the N-terminus abolishes the transport of the GFP–Ogg1 fusion protein into the mitochondria. This analysis indicates that the N-terminus of Ogg1 contains the mitochondrial localization signal. We provide evidence that both yeast and human Ogg1 proteins protect the mitochondrial genome from spontaneous, as well as induced, oxidative damage. Genetic analyses revealed that the combined inactivation of OGG1 and OGG2 [encoding an isoform of the Ogg1 protein, also known as endonuclease three-like glycosylase I (Ntg1)] leads to suppression of spontaneously arising mutations in the mitochondrial genome when compared with the ogg1 single mutant or the wild-type. Together, these studies provide in vivo evidence for the repair of oxidative lesions in the mitochondrial genome by human and yeast Ogg1 proteins. Our study also identifies Ogg2 as a suppressor of oxidative mutagenesis in mitochondria.
Resumo:
The mutagen-sensitive CHO line irs1SF was previously isolated on the basis of hypersensitivity to ionizing radiation and was found to be chromosomally unstable as well as cross-sensitive to diverse kinds of DNA-damaging agents. The analysis of somatic cell hybrids formed between irs1SF and human lymphocytes implicated a human gene (defined as XRCC3; x-ray repair cross-complementing), which partially restored mitomycin C resistance to the mutant. A functional cDNA that confers mitomycin C resistance was transferred to irs1SF cells by transforming them with an expression cDNA library and obtaining primary and secondary transformants. Functional cDNA clones were recovered from a cosmid library prepared from a secondary transformant. Transformants also showed partial correction of sensitivity to cisplatin and gamma-rays, efficient correction of chromosomal instability, and substantially improved plating efficiency and growth rate. The XRCC3 cDNA insert is approximately 2.5 kb and detects an approximately 3.0-kb mRNA on Northern blots. The cDNA was mapped by fluorescence in situ hybridization to human chromosome 14q32.3, which was consistent with the chromosome concordance data of two independent hybrid clone panels.
Resumo:
DNA sequencing, RNA mapping, and protein expression experiments revealed the presence of a gene, tfoX+, encoding a 24.9-kDa polypeptide, that is transcribed divergently from a common promoter region with the Haemophilus influenzae rec-1+ gene. H. influenzae strains mutant for tfoX failed to bind transforming DNA and were transformation deficient. Primer extension experiments utilizing in vivo total RNA from precompetent and competent H. influenzae cells demonstrated that transcription of tfoX+ increased immediately upon competence induction, suggesting that tfoX+ is an early competence gene. Similar experiments showed that the expression of the late competence-specific gene, com101A+, was tfoX+ dependent. Moreover, expression of plasmid-borne tfoX+ in H. influenzae resulted in constitutive competence. The addition of cyclic adenosine monophosphate (cAMP) to strains carrying a tfoX::lacZ operon fusion resulted in an immediate increase in beta-galactosidase activity that correlated with an increase in genetic transformability. Collectively, our results suggest that TfoX may play a key role in the development of genetic competence by regulating the expression of late competence-specific genes.