111 resultados para DMC
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão do Território na Área de Especialização em Detecção Remota e Sistemas de Informação Geográfica
Resumo:
This document is the DMC Section of Iowa’s 2007 JJDP Act formula grant three year plan update. The bulk of this 2007 plan is an “update” of the program plan completed since submission of the original 2006 plan. The Division of Criminal and Juvenile Justice Planning (CJJP) wrote Iowa’s three year plan update. CJJP is the state agency responsible for administering the JJDP Act in Iowa. Federal officials refer to state administering agencies as the state planning agency (SPA). The Plan was developed and approved by Iowa’s Juvenile Justice Advisory Council. That Council assists with administration of the JJDP Act, and also provides guidance and direction to the SPA, the Governor and the legislature regarding juvenile justice issues in Iowa. Federal officials refer to such state level groups as state advisory groups (SAG’s). The acronyms SPA and SAG are used through this report.
Resumo:
This document is the DMC Section of Iowa’s 2009 federal Juvenile Justice and Delinquency Prevention Act (JJDP Act) formula grant three year plan update. The Division of Criminal and Juvenile Justice Planning (CJJP) wrote this update. CJJP is the state agency responsible for administering the JJDP Act in Iowa. Federal officials refer to state administering agencies as the state planning agency (SPA). The Plan was developed and approved by Iowa’s Juvenile Justice Advisory Council. That Council assists with administration of the JJDP Act, and also provides guidance and direction to the SPA, the Governor and the legislature regarding juvenile justice issues in Iowa. Federal officials refer to such state level groups as state advisory groups (SAG’s). The acronyms SPA and SAG are used through this report.
Resumo:
This document is the DMC Section of Iowa’s 2009 federal Juvenile Justice and Delinquency Prevention Act (JJDP Act) formula grant three year plan update. The Division of Criminal and Juvenile Justice Planning (CJJP) wrote this update. CJJP is the state agency responsible for administering the JJDP Act in Iowa. Federal officials refer to state administering agencies as the state planning agency (SPA). The Plan was developed and approved by Iowa’s Juvenile Justice Advisory Council. That Council assists with administration of the JJDP Act, and also provides guidance and direction to the SPA, the Governor and the legislature regarding juvenile justice issues in Iowa. Federal officials refer to such state level groups as state advisory groups (SAG’s). The acronyms SPA and SAG are used through this report.
Resumo:
The Iowa State Court Administrator’s Office (SCA) created the CASP Advisory Committee in October 2013 to develop a state plan addressing disproportionate minority contact (DMC) in the juvenile justice system. The planning was assisted with a discretionary grant awarded from the federal Office of Juvenile Justice and Delinquency Prevention (OJJDP).
Resumo:
During a half-day symposium, the topic 'Channels and Transporters' was covered with five lectures, including a presentation on 'Introduction and Basics of Channels and Transporters' by Beat Ernst, lectures on structure, function and physiology of channels and transporters ('The Structural Basis for Ion Conduction and Gating in Pentameric Ligand-Gated Ion Channels' by Raimund Dutzler and 'Uptake and Efflux Transporters for Endogenous Substances and for Drugs' by Dietrich Keppler), and a case study lecture on 'Avosentan' by Werner Neidhart. The program was completed by Matthias Hediger who introduced to the audience the National Center of Competence in Research (NCCR)-TransCure in his lecture entitled 'From Transport Physiology to Identification of Therapeutic Targets'.
Resumo:
A systematic study of the reaction of β-hydroxy ethers with ruthenium tetraoxide (RuO4), generated in situ from ruthenium trichloride and sodium periodate, is presented, leading to nine-membered ring keto-lactones in moderate yields. Three different solvent systems - AcOEt/MeCN/H2O, MeCN/H2O and DMC/H2O - were studied leading to the desired products in lower yields than those obtained with the classical mixture of CCl4/MeCN/H2O, commonly used in reactions promoted by this oxidant. However, it is noteworthy that these new solvent systems represent greener alternatives to the chlorinated solvents used in the oxidative cleavage of β-hydroxy ethers by RuO4.
Resumo:
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 ºC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chains.
Resumo:
Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water and electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 m width were achieved. After cross-linking with glutaraldehyde, -elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ~ 80 ºC. Moreover, -Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for oriented and random fibers mats in a PBS solution was 330 ± 10 kPa and 732 ± 165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.
Resumo:
Thermal degradation of as electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde (GA) have been studied by thermogravimetry (TG) coupled with an infrared spectrometer (FTIR). The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 ºC, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 – 270 ºC and chitosan thermal degradation that starts around 250 ºC and goes up to 400 ºC. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.
Resumo:
O meio ambiente é uma grande preocupação mundial existindo cada vez mais imposições legais no sentido de o proteger. Torna-se assim necessário que as indústrias adoptem e desenvolvam processos alternativos mais limpos. A indústria de curtumes transforma a pele animal em couro, material resistente à putrefacção e com estabilidade térmica suficiente para ser manufacturado nas indústrias do calçado, estofos, vestuário e marroquinaria. A transformação referida é efectuada através duma série de processos entre os quais o caleiro, processo que visa depilar a pele e promover o relaxamento da estrutura fibrilar, tem um papel importante. O processo de caleiro produz um efluente bastante poluente. Tendo em conta esse facto, este trabalho teve como objectivo desenvolver processos de depilação de pele caprina sem destruição do pêlo, com vista à redução da quantidade de sulfureto e sulfidrato de sódio utilizada e da carga poluente do efluente. Além disso, o processo permite a recuperação do pêlo e este pode ser reaproveitado como fertilizante orgânico, hidrolisado de queratina, compostagem, etc. Todo o trabalho foi realizado tomando por base um processo de caleiro padrão utilizado industrialmente, alterando-o de forma a obter um processo de caleiro óptimo de depilação sem destruição do pêlo com e sem utilização de enzimas. Numa primeira fase, desenvolveu-se um processo de depilação sem destruição do pêlo normalmente utilizado para a pele de bovino que foi adaptado com resultados positivos, designado de processo sem enzimas. Numa segunda fase, desenvolveu-se um processo enzimático em que se utilizou uma protease (Erhavit DMC), uma lipase (Defat 50) e uma amilase (Mayzme SD-L); este processo deu bons resultados tal como o anterior. A redução da quantidade de sulfureto de sódio foi de 33% e 53% para o processo sem enzimas e processo com enzimas, respectivamente, em relação ao processo padrão. O efeito dos processos na carga poluente, à escala piloto, comprova uma redução de 37% nos SST, 37% nos SDT, 60% na CQO, 9% no S2- e 73% no Azoto para o processo sem enzimas e uma redução de 93% nos SST, 63% nos SDT, 69% na CQO, 69% no S2- e 83% no Azoto para o processo com enzimas, quando comparados com o processo padrão. . Uma análise de custos, com incidência apenas nos agentes químicos utilizados, permitiu concluir a existência de uma redução de custos anuais de 30% para o processo com enzimas e de 13% para o processo sem enzimas, quando comparados com o processo padrão. Como conclusão, os processos desenvolvidos apresentam um grande potencial para serem explorados industrialmente.
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.