936 resultados para DISSOCIATION ENERGIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Account we have compiled a list of reliable bond energies that are based on a set of critically evaluated experiments. A brief description of the three most important experimental techniques for measuring bond energies is provided. We demonstrate how these experimental data can be applied to yield the heats of formation of organic radicals and the bond enthalpies of more than 100 representative organic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the effectiveness of six exchange/correlation functional combinations (Becke/Lee, Yang and Parr; Becke-3/Lee, Yang and Parr; Becke/Perdew-Wang 91; Becke-3/Perdew-Wang 91; Becke/Perdew 86; Becke-3/Perdew 86) for computing C-N, O-O and N-NO2 dissociation energies and dipole moments of five compounds. The studied compounds are hexabydro-1,3,5-trinitro-1,3,5-triazine (RDX), dimethylnitramine, cyanogen, nitromethane and ozone. The Becke-3/Perdew 86 in conjunction with 6-31G

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical potential energy functions which are valid at all dissociation limits have been derived for the ground states of SO2 and O3. The procedure involves minimizing the errors between the observed vibrational spectra and spectra calculated by a variational procedure. Good agreement is obtained between the observed and calculated spectra for both molecules. Comparisons are made between anharmonic force fields, previously determined from the spectral data, and the force fields obtained by differentiating the derived analytical functions at the equilibrium configurations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe near-threshold high-resolution spectra and continuum resonance dynamical behaviour of all three stable hydrogen isotopic variants, and finally obtain improved values for the dissociation energies of hydrogen molecule and its ion. The second dissociation limit is determined by analysing the onset of the vibrational continuum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the excitation and dissociation processes of the molecule W(CO)(6) in collisions with low kinetic energy (3 keV) protons, monocharged fluorine, and chlorine ions using double charge transfer spectroscopy. By analyzing the kinetic energy loss of the projectile anions, we measured the excitation energy distribution of the produced transient dications W(CO)(6)(2+). By coincidence measurements between the anions and the stable or fragments of W(CO)(6)(2+), we determined the energy distribution for each dissociation channel. Based on the experimental data, the emission of the first CO was tentatively attributed to a nonstatistical direct dissociation process and the emission of the second or more CO ligands was attributed to the statistical dissociation processes. The dissociation energies for the successive breaking of the W-CO bond were estimated using a cascade model. The ratio between charge separation and evaporation (by the loss of CO+ and CO, respectively) channels was estimated to be 6% in the case of Cl+ impact. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3523347]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag-2 (+) is compared with a literature spectrum as a further benchmark.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH3OO-, CD3OO-, and CH3CH2OO-) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer, gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH3OO, (X) over tilde (2)A"] = 1.161 +/- 0.005 eV, EA[CD3OO, (X) over tilde (2)A"] = 1.154 +/- 0.004 eV, and EA[CH3CH2OO, (X) over tilde (2)A"] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: DeltaE((X) over tilde 2A"-(A) over tilde 2A')[CH3OO] = 0.914 +/- 0.005 eV, DeltaE((X) over tilde (2)A"-(A) over tilde 2A') [CD3OO] = 0.913 +/- 0.004 eV, and DeltaE((X) over tilde (2)A"-(A) over tilde (2)A')[CH3CH2OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube k(FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta (acid)G(298)(CH3OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta (acid)G(298)(CD3OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta (acid)G(298)(CH3CH2OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta H-acid(298)(CH3OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta H-acid(298)(CD3OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta H-acid(298)(CH2CH3OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH298(CH3OO-H) 87.8 +/- 1.0 kcal mol(-1), DH298(CD3OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH298(CH3CH2OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH3OO and CH3CH2OO. Using experimental bond enthalpies, DH298(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta H-f(298)[CH3OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta H-f(298)[CH3CH2OO] = -6.8 +/- 2.3 kcal mol(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have sought to determine the nature of the free-radical precursors to ring-opened hydrocarbon 5 and ring-closed hydrocarbon 6. Reasonable alternative formulations involve the postulation of hydrogen abstraction (a) by a pair of rapidly equilibrating classical radicals (the ring-opened allylcarbinyl-type radical 3 and the ring-closed cyclopropylcarbinyl-type 4), or (b) by a nonclassical radical such as homoallylic radical 7.

[Figure not reproduced.]

Entry to the radical system is gained via degassed thermal decomposition of peresters having the ring-opened and the ring-closed structures. The ratio of 6:5 is essentially independent of the hydrogen donor concentration for decomposition of the former at 125° in the presence of triethyltin hydrdride. A deuterium labeling study showed that the α and β methylene groups in 3 (or the equivalent) are rapidly interchanged under these conditions.

Existence of two (or more) product-forming intermediates is indicated (a) by dependence of the ratio 6:5 on the tin hydride concentration for decomposition of the ring-closed perester at 10 and 35°, and (b) by formation of cage products having largely or wholly the structure (ring-opened or ring-closed) of the starting perester.

Relative rates of hydrogen abstraction by 3 could be inferred by comparison of ratios of rate constants for hydrogen abstraction and ortho-ring cyclization:

[Figure not reproduced.]

At 100° values of ka/kr are 0.14 for hydrogen abstraction from 1,4-cyclohexadiene and 7 for abstraction from triethyltin hydride. The ratio 6:5 at the same temperature is ~0.0035 for hydrogen abstraction from 1,4-cyclohexadiene, ~0.078 for abstraction from the tin hydride, and ≥ 5 for abstraction from cyclohexadienyl radicals. These data indicate that abstraction of hydrogen from triethyltin hydride is more rapid than from 1,4-cyclohexadiene by a factor of ~1000 for 4, but only ~50 for 3.

Measurements of product ratios at several temperatures allowed the construction of an approximate energy-level scheme. A major inference is that isomerization of 3 to 4 is exothermic by 8 ± 3 kcal/mole, in good agreement with expectations based on bond dissociation energies. Absolute rate-constant estimates are also given.

The results are nicely compatible with a classical-radical mechanism, but attempted interpretation in terms of a nonclassical radical precursor of product ratios formed even from equilibrated radical intermediates leads, it is argued, to serious difficulties.

The roles played by hydrogen abstraction from 1,4,-cyclohexadiene and from the derived cyclohexadienyl radicals were probed by fitting observed ratios of 6:5 and 5:10 in the sense of least-squares to expressions derived for a complex mechanistic scheme. Some 30 to 40 measurements on each product ratio, obtained under a variety of experimental conditions, could be fit with an average deviation of ~6%. Significant systematic deviations were found, but these could largely be redressed by assuming (a) that the rate constant for reaction of 4 with cyclohexadienyl radical is inversely proportional to the viscosity of the medium (i.e., is diffusion-controlled), and (b) that ka/kr for hydrogen abstraction from 1,4-cyclohexadiene depends slightly on the composition of the medium. An average deviation of 4.4% was thereby attained.

Degassed thermal decomposition of the ring-opened perester in the presence of the triethyltin hydride occurs primarily by attack on perester of triethyltin radicals, presumably at the –O-O- bond, even at 0.01 M tin hydride at 100 and 125°. Tin ester and tin ether are apparently formed in closely similar amounts under these conditions, but the tin ester predominates at room temperature in the companion air-induced decomposition, indicating that attack on perester to give the tin ether requires an activation energy approximately 5 kcal/mole in excess of that for the formation of tin ester.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The atomic structures and electronic properties of small Ti-N (N=2-10) clusters have been studied by using the density-functional theory with a local spin density approximation. We find that the inner-shells (3s3p) of the titanium atom plays an important role in the formation of the small clusters. We have obtained the ground state of titanium clusters, Ti-7 is found to be a magic cluster, which is in good agreement with the experimental results. Starting with Ti-8 cluster some features of the electronic structure of the titanium bulk have been developed. The ionization potentials and magnetic moments for these small titanium clusters are also presented. (C) 2000 American Institute of Physics. [S0021- 9606(00)30544-X].

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photodissociation dynamics Of C2H5SH, i-C-3-H7SH and n-C3H7SH at 243.1 nm were investigated using velocity map ion-imaging method. H-atom photolysis products were detected by a (2 + 1) resonance enhanced ionization scheme. Both the angular distribution and translational energy distribution of the H-atom elimination processes were determined from the ion images of the H-atom products. The experimental results indicate that the H-atom eliminations from these molecules are mainly direct and fast dissociation processes from a repulsive potential energy state. And a more statistical dissociation process that likely occurs oil the ground state via internal conversion has also been observed. Dissociation energies of the S-H bonds are also derived from the H-atom product translational energy distributions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multiphoton ionization of the hydrogen-bonding cluster pyridazine-methanol (C4H4N2-CH3OH) was studied using a time-of-flight mass spectrometer at the wavelengths of 355 and 532 nm. At both wavelengths, a series of protonated C4H4N2-(CH3OH)(n)-H+ cluster ions were obtained. Relevant ab initio calculations were performed with HF and B3LYP methods. Equilibrium geometries of both neutral and ionic C4H4N2-CH3OH clusters, and dissociation channels and dissociation energies of ionic clusters, are presented. The results show that when C4H4N2-CH3OH is vertically ionized, C4H4N2H+ and CH3O are the dominant products via proton transfer reaction. A high energy barrier makes another channel corresponding to the production of C4H4N2H+ and CH2OH disfavored. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, dissociation energies, electron affinities, ionization potentials and dipole moments of the title molecules in neutral and charged ions were studied by use of density functional method. Ground states for each molecule were assigned. The calculated bond distance decreases with the increasing of atomic number of 4d metals, reaches minimum at RhS, then increases. For cationic molecules, the calculated bond distance decreases to the minimum at MoS+, then increases. The calculated vibrational frequency decreases from YS(YS+) to PdS(PdS+) for both neutral and cationic molecules. The bond ionic character decreases from YS(YS+) to PdS(PdS+) for neutral and cationic molecules. The bonding patterns are discussed and compared with the available studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that, besides ionic component, covalent bonds are formed between the metal s, d orbitals, and the p orbital of S, Se, and Te. For neutral and cationic molecules, the covalent character increases from ScX to CrX and from FeX to CuX with an exception of decrease at MnX and ZnX, while for anionic molecules, the trend is not obvious. For both neutral and charged molecules, the sulfides have the shortest bond distance and largest vibrational frequency, while tellurides have the largest bond distance and smallest vibrational frequency. For neutral and anionic molecules, the dissociation energy of sulfides is the largest, that of tellurides is the smallest, while this only remains true for cationic molecules from ScX+ to FeX+.