989 resultados para DISSIPATIVE COLLISIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed computer simulations of interstellar cloud-cloud collisions using the three-dimensional smoothed particle magnetohydrodynamics method. In order to study the role of the magnetic field on the process of collision-triggered fragmentation, we focused our attention on head-on supersonic collisions between two identical spherical molecular-clouds. Two extreme configurations of the magnetic field were adopted: parallel and perpendicular to the initial clouds motion. The initial magnetic field strength was approximately 12.0 muG. In the parallel case, much more of the collision debris were retained in the shocking region than in the non-magnetic case where gas escaped freely throughout the symmetry plane. Differently from the non-magnetic case, eddy-like vortices were formed. The regions of highest vorticity and the the regions of highest density are offset. We found clumps formation only in the parallel case, however, they were larger, hotter and less dense than in the analogous non-magnetic case. In the perpendicular case, the compressed field works as a magnetic wall, preventing a stronger compression of the colliding clouds. This last effect inhibits direct contact of the two clouds. In both cases, we found that the field lines show a chaotic aspect in large scales. Also, the field magnitude is considerably amplified in the shock layer. However, the field distribution is almost coherent in the higher density regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Questo lavoro di tesi è stato svolto nell'ambito del gruppo Nucl-ex di Bologna dell'INFN. L'esperimento specifico si inquadra nello studio di collisioni di nuclei con numero di neutroni N uguale al numero di protoni Z (nuclei pari-pari). In particolare si vuol analizzare una reazione centrale, cioè a piccoli parametri d'impatto, nella quale i nuclei del proiettile e del bersaglio fondono assieme formando un sistema unico eccitato (nucleo composto) che successivamente decade. Nel caso della misura descritta sono stati utilizzati un fascio di 16O ed un bersaglio di 12C ed il sistema fuso che si forma è 28Si. Per rivelare le particelle provenienti dal decadimento è stato impiegato l'apparato G.AR.F.I.E.L.D. (General Array for Fragment Identification and Emitted Light particles in Dissipative collisions) accoppiato al rivelatore denominato Ring Counter (RCo). La misura è stata realizzata presso i Laboratori Nazionali dell'INFN di Legnaro (Pd) in collaborazione tra le Università e le sezioni INFN di Bologna, Firenze, Napoli e Padova. Il fascio è stato accelerato mediante l'acceleratore elettrostatico Tandem XTU, mentre il bersaglio era fisso nel sistema di riferimento del laboratorio. La misura di collisione è stata realizzata per tre diverse energie cinetiche del fascio: 90.5 MeV, 110 MeV e 130 MeV. Il lavoro è consistito principalmente nella partecipazione a diverse fasi della misura, tra cui preparazione, presa dati ed alcune calibrazioni energetiche dei rivelatori, fino ad ottenere risultati preliminari sulle distribuzioni di frequenza dei frammenti rivelati, sulle molteplicità e sulle distribuzioni angolari di particelle leggere. L'analisi preliminare effettuata ha mostrato che il valore medio di carica del residuo di evaporazione {Definito come il frammento che rimane nello stato fondamentale alla fine della catena di decadimento.} diminuisce all'aumentare dell'energia a disposizione. In modo consistente aumenta, all'aumentare dell'energia, la molteplicità media delle delle particelle leggere. Le distribuzioni angolari di particelle leggere mostrano andamenti molto simili fra le diverse energie, ma poco compatibili con il fatto che, all'aumentare dell'energia del fascio, diminuisce il cono di emissione di particelle di decadimento, in quanto aumenta la velocità del sistema fuso.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present new coupled channel calculations with the Sao Paulo potential (SPP) as the bare interaction, and an imaginary potential with system and energy independent normalization that has been developed to take into account dissipative processes in heavy-ion reactions. This imaginary potential is based on high-energy nucleon interaction in nuclear medium. Our theoretical predictions for energies up to approximate to 100 MeV/nucleon agree very well with the experimental data for the p, n + nucleus, (16)O + (27)Al, (16)O + (60)Ni, (58)Ni + (124)Sn, and weakly bound projectile (7)Li + (120)Sn systems. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some consequences of dissipation are studied for a classical particle suffering inelastic collisions in the hybrid Fermi-Ulam bouncer model. The dynamics of the model is described by a two-dimensional nonlinear area-contracting map. In the limit of weak and moderate dissipation we report the occurrence of crisis and in the limit of high dissipation the model presents doubling bifurcation cascades. Moreover, we show a phenomena of annihilation by pairs of fixed points as the dissipation varies. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fermi accelerator model is studied in the framework of inelastic collisions. The dynamics of this problem is obtained by use of a two-dimensional nonlinear area-contracting map. We consider that the collisions of the particle with both periodically time varying and fixed walls are inelastic. We have shown that the dissipation destroys the mixed phase space structure of the nondissipative case and in special, we have obtained and characterized in this problem a family of two damping coefficients for which a boundary crisis occurs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer experiments of interstellar cloud collisions were performed with a new smoothed-particle-hydrodynamics (SPH) code. The SPH quantities were calculated by using spatially adaptive smoothing lengths and the SPH fluid equations of motion were solved by means of a hierarchical multiple time-scale leapfrog. Such a combination of methods allows the code to deal with a large range of hydrodynamic quantities. A careful treatment of gas cooling by H, H(2), CO and H II, as well as a heating mechanism by cosmic rays and by H(2) production on grains surface, were also included in the code. The gas model reproduces approximately the typical environment of dark molecular clouds. The experiments were performed by impinging two dynamically identical spherical clouds onto each other with a relative velocity of 10 km s(-1) but with a different impact parameter for each case. Each object has an initial density profile obeying an r(-1)-law with a cutoff radius of 10 pc and with an initial temperature of 20 K. As a main result, cloud-cloud collision triggers fragmentation but in expense of a large amount of energy dissipated, which occurred in the head-on case only. Off-center collision did not allow remnants to fragment along the considered time (similar to 6 Myr). However, it dissipated a considerable amount of orbital energy. Structures as small as 0.1 pc, with densities of similar to 10(4) cm(-3), were observed in the more energetic collision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a sufficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.