999 resultados para DIRICHLET PROCESSES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental task in pervasive computing is reliable acquisition of contexts from sensor data. This is crucial to the operation of smart pervasive systems and services so that they might behave efficiently and appropriately upon a given context. Simple forms of context can often be extracted directly from raw data. Equally important, or more, is the hidden context and pattern buried inside the data, which is more challenging to discover. Most of existing approaches borrow methods and techniques from machine learning, dominantly employ parametric unsupervised learning and clustering techniques. Being parametric, a severe drawback of these methods is the requirement to specify the number of latent patterns in advance. In this paper, we explore the use of Bayesian nonparametric methods, a recent data modelling framework in machine learning, to infer latent patterns from sensor data acquired in a pervasive setting. Under this formalism, nonparametric prior distributions are used for data generative process, and thus, they allow the number of latent patterns to be learned automatically and grow with the data - as more data comes in, the model complexity can grow to explain new and unseen patterns. In particular, we make use of the hierarchical Dirichlet processes (HDP) to infer atomic activities and interaction patterns from honest signals collected from sociometric badges. We show how data from these sensors can be represented and learned with HDP. We illustrate insights into atomic patterns learned by the model and use them to achieve high-performance clustering. We also demonstrate the framework on the popular Reality Mining dataset, illustrating the ability of the model to automatically infer typical social groups in this dataset. Finally, our framework is generic and applicable to a much wider range of problems in pervasive computing where one needs to infer high-level, latent patterns and contexts from sensor data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding human activities is an important research topic, most noticeably in assisted-living and healthcare monitoring environments. Beyond simple forms of activity (e.g., an RFID event of entering a building), learning latent activities that are more semantically interpretable, such as sitting at a desk, meeting with people, or gathering with friends, remains a challenging problem. Supervised learning has been the typical modeling choice in the past. However, this requires labeled training data, is unable to predict never-seen-before activity, and fails to adapt to the continuing growth of data over time. In this chapter, we explore the use of a Bayesian nonparametric method, in particular the hierarchical Dirichlet process, to infer latent activities from sensor data acquired in a pervasive setting. Our framework is unsupervised, requires no labeled data, and is able to discover new activities as data grows. We present experiments on extracting movement and interaction activities from sociometric badge signals and show how to use them for detecting of subcommunities. Using the popular Reality Mining dataset, we further demonstrate the extraction of colocation activities and use them to automatically infer the structure of social subgroups. © 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical Dirichlet processes (HDP) was originally designed and experimented for a single data channel. In this paper we enhanced its ability to model heterogeneous data using a richer structure for the base measure being a product-space. The enhanced model, called Product Space HDP (PS-HDP), can (1) simultaneously model heterogeneous data from multiple sources in a Bayesian nonparametric framework and (2) discover multilevel latent structures from data to result in different types of topics/latent structures that can be explained jointly. We experimented with the MDC dataset, a large and real-world data collected from mobile phones. Our goal was to discover identity–location– time (a.k.a who-where-when) patterns at different levels (globally for all groups and locally for each group). We provided analysis on the activities and patterns learned from our model, visualized, compared and contrasted with the ground-truth to demonstrate the merit of the proposed framework. We further quantitatively evaluated and reported its performance using standard metrics including F1-score, NMI, RI, and purity. We also compared the performance of the PS-HDP model with those of popular existing clustering methods (including K-Means, NNMF, GMM, DP-Means, and AP). Lastly, we demonstrate the ability of the model in learning activities with missing data, a common problem encountered in pervasive and ubiquitous computing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees and Wishart processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regression is at the cornerstone of statistical analysis. Multilevel regression, on the other hand, receives little research attention, though it is prevalent in economics, biostatistics and healthcare to name a few. We present a Bayesian nonparametric framework for multilevel regression where individuals including observations and outcomes are organized into groups. Furthermore, our approach exploits additional group-specific context observations, we use Dirichlet Process with product-space base measure in a nested structure to model group-level context distribution and the regression distribution to accommodate the multilevel structure of the data. The proposed model simultaneously partitions groups into cluster and perform regression. We provide collapsed Gibbs sampler for posterior inference. We perform extensive experiments on econometric panel data and healthcare longitudinal data to demonstrate the effectiveness of the proposed model

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The users often have additional knowledge when Bayesian nonparametric models (BNP) are employed, e.g. for clustering there may be prior knowledge that some of the data instances should be in the same cluster (must-link constraint) or in different clusters (cannot-link constraint), and similarly for topic modeling some words should be grouped together or separately because of an underlying semantic. This can be achieved by imposing appropriate sampling probabilities based on such constraints. However, the traditional inference technique of BNP models via Gibbs sampling is time consuming and is not scalable for large data. Variational approximations are faster but many times they do not offer good solutions. Addressing this we present a small-variance asymptotic analysis of the MAP estimates of BNP models with constraints. We derive the objective function for Dirichlet process mixture model with constraints and devise a simple and efficient K-means type algorithm. We further extend the small-variance analysis to hierarchical BNP models with constraints and devise a similar simple objective function. Experiments on synthetic and real data sets demonstrate the efficiency and effectiveness of our algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Bayesian nonparametric model for Taguchi's on-line quality monitoring procedure for attributes is introduced. The proposed model may accommodate the original single shift setting to the more realistic situation of gradual quality deterioration and allows the incorporation of an expert's opinion on the production process. Based on the number of inspections to be carried out until a defective item is found, the Bayesian operation for the distribution function that represents the increasing sequence of defective fractions during a cycle considering a mixture of Dirichlet processes as prior distribution is performed. Bayes estimates for relevant quantities are also obtained. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Bayesian nonparametric model for Taguchi's on-line quality monitoring procedure for attributes is introduced. The proposed model may accommodate the original single shift setting to the more realistic situation of gradual quality deterioration and allows the incorporation of an expert's opinion on the production process. Based on the number of inspections to be carried out until a defective item is found, the Bayesian operation for the distribution function that represents the increasing sequence of defective fractions during a cycle considering a mixture of Dirichlet processes as prior distribution is performed. Bayes estimates for relevant quantities are also obtained. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet process mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06