839 resultados para DIRECT-FILTRATION
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
The Environmental Process and Simulation Center (EPSC) at Michigan Technological University started accommodating laboratories for an Environmental Engineering senior level class CEE 4509 Environmental Process and Simulation Laboratory since 2004. Even though the five units that exist in EPSC provide the students opportunities to have hands-on experiences with a wide range of water/wastewater treatment technologies, a key module was still missing for the student to experience a full cycle of treatment. This project fabricated a direct-filtration pilot system in EPSC and generated a laboratory manual for education purpose. Engineering applications such as clean bed head loss calculation, backwash flowrate determination, multimedia density calculation and run length prediction are included in the laboratory manual. The system was tested for one semester and modifications have been made both to the direct filtration unit and the laboratory manual. Future work is also proposed to further refine the module.
Resumo:
Models of the filtration phenomenon describe the mass balance in bed filtration in terms of particle removal mechanisms, and allow for the determination of global particle removal efficiencies. These models are defined in terms of the geometry and characteristic elements of granule collectors, particles and fluid, and also the composition of the balance of forces that act in the particle collector system. This work analyzes particles collection efficiency comparing downflow and upflow direct filtration, taking into account the contribution of the gravitational factor of the settling removal efficiency in future proposal of initial collection efficiency models for upflow filtration. A qualitative analysis is also made of the proposal for the collection efficiency models for particle removal in direct downflow and upflow filtration using a Computational Fluid Dynamics (CFD) tool. This analysis showed a strong influence of gravitational factor in initial collection efficiency (t = 0) of particles, as well as the reasons of their values to be smaller for upflow filtration in comparison with the downflow filtration.
Resumo:
A pilot scale multi-media filtration system was used to evaluate the effectiveness of filtration in removing petroleum hydrocarbons from a source water contaminated with diesel fuel. Source water was artificially prepared by mixing bentonite clay and tap water to produce a turbidity range of 10-15 NTU. Diesel fuel concentrations of 150 ppm or 750 ppm were used to contaminate the source water. The coagulants used included Cat Floc K-10 and Cat Floc T-2. The experimental phase was conducted under direct filtration conditions at constant head and constant rate filtration at 8.0 gpm. Filtration experiments were run until the filter reached its clogging point as noted by a measured peak pressure loss of 10 psi. The experimental variables include type of coagulant, oil concentration and source water. Filtration results were evaluated based on turbidity removal and petroleum hydrocarbon (PHC) removal efficiency as measured by gas chromatography. Experiments indicated that clogging was controlled by the clay loading on the filter and that inadequate destabilization of the contaminated water by the coagulant limited the PHC removal. ^
Resumo:
This work assesses the efficiency of polyacrylamides for natural organic matter (NOM) removal from Paraiba do Sul River (Brazil) raw water for drinking purposes. Jar tests were performed following an experimental design protocol. Three kinds of polyacrylamides (anionic, cationic, and non-ionic) at 0.2 mg L(-1) were tested. After coagulation, turbidity, DOC, UVA(254) and SCAN (UV-absorbing material) were determined. Color and pH were also measured. It was found that polyacrylamides did not reduce the amounts of alum and lime needed in the process and that the amount of alum alone for removing UV-absorbing organic matter is significantly higher. Efficiency of the coagulation process decreased as follows: non-ionic -> cationic -> anionic -> no polyacrylamide. Removal efficiencies for the best case were: 100%, 90%, 83%, and 68% for turbidity, DOC, UVA(254), and SCAN, respectively.
Resumo:
Eutrophication is a growing process present in the water sources located in the northeast of Brazil. Among the main consequences of these changes in trophic levels of a water source, stands out adding complexity to the treatment to achieve water standards. By these considerations, this study aimed to define, on a laboratory scale, products and operational conditions to be applied in the processing steps using raw water from Gargalheiras dam, RN, Brazil. The dam mentioned shows a high number of cyanobacteria, with a concentration of cells / ml higher than that established by Decree No. 518/04 MS. The same source was also considered by the state environmental agency in 2009 as hypereutrophic. The static tests developed in this research simulated direct filtration (laboratory filters) and pre-oxidation with chlorine and powdered activated carbon adsorption. The research included the evaluation of the coagulants aluminum hydrochloride (HCA) and alum (SA). The development of the research investigated the conditions for rapid mixing, the dosages of coagulants and pHs of coagulation by the drawing of diagrams. The interference of filtration rate and particle size of filtering means were evaluated as samples and the time of contact were tested with chlorine and activated carbon. By the results of the characterization of the raw water source it was possible to identify the presence of a high pH (7.34). The true color was significant (29 uH) in relation to the apparent color and turbidity (66 uH and 13.60 NTU), reflecting in the measurement of organic matter: MON (8.41 mg.L-1) and Abs254 (0.065 cm-1). The optimization of quick mix set time of 17", the speed gradient of 700 s-1 in the coagulation with HCA and the time of 20" with speed gradient of 800 s-1 for SA. The smaller particle sizes of sand filtering means helped the treatment and the variation in filtration rate did not affect significantly the efficiency of the process. The evaluation of the processing steps found adjustment in standard color and turbidity of the Decree nº 518/04 MS, taking in consideration the average values found in raw water. In the treatment using the HCA for direct filtration the palatable pattern based on the apparent color can be achieved with a dose of 25 mg L-1. With the addition of pre-oxidation step, the standard result was achieved with a reduced dose for 12 mgHCA.L-1. The turbidity standard for water was obtained by direct filtration when the dose exceeds 25 mg L-1 of HCA. With pre-oxidation step there is the possibility of reducing the dose to 20 mg L-1.The addition of CAP adsorption, promoted drinking water for both parameters, with even lower dosage, 13 mg L-1 of HCA. With coagulation using SA removal required for the parameter of apparent color it was achieved with pre-oxidation and 22 mgSA.L-1. Despite the satisfactory results of treatment with the alum, it was not possible to provide water with turbidity less than 1.00 NTU even with the use of all stages of treatment
Resumo:
The aim of this study was to investigate the performance of an experimental rainwater treatment system for non-potable uses. Without the first-flush discharge it was expected to control the quality of captured rainwater and to minimize the rainwater by-pass caused by the first-flush strategy. A full-scale direct filtration unit was operated and a solution of natural corn starch was used as the primary coagulant. The color, turbidity e coliform efficiencies of the unit was analyzed based on filtration loads and the net water production was estimated. The results pointed out turbidity removal up to 70.8% and color removal up to 61.0%. The backwash of the filtering system was completed in 3 minutes at the rate of 1,440 m3/m2day with consumption of treated water from 0.5% to 2.2%, based on the potentially harvesting.
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences, Chemical Engineering.
Resumo:
BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.
Resumo:
High performance liquid chromatography (HPLC) is the reference method for measuring concentrations of antimicrobials in blood. This technique requires careful sample preparation. Protocols using organic solvents and/or solid extraction phases are time consuming and entail several manipulations, which can lead to partial loss of the determined compound and increased analytical variability. Moreover, to obtain sufficient material for analysis, at least 1 ml of plasma is required. This constraint makes it difficult to determine drug levels when blood sample volumes are limited. However, drugs with low plasma-protein binding can be reliably extracted from plasma by ultra-filtration with a minimal loss due to the protein-bound fraction. This study validated a single-step ultra-filtration method for extracting fluconazole (FLC), a first-line antifungal agent with a weak plasma-protein binding, from plasma to determine its concentration by HPLC. Spiked FLC standards and unknowns were prepared in human and rat plasma. Samples (240 microl) were transferred into disposable microtube filtration units containing cellulose or polysulfone filters with a 5 kDa cut-off. After centrifugation for 60 min at 15000g, FLC concentrations were measured by direct injection of the filtrate into the HPLC. Using cellulose filters, low molecular weight proteins were eluted early in the chromatogram and well separated from FLC that eluted at 8.40 min as a sharp single peak. In contrast, with polysulfone filters several additional peaks interfering with the FLC peak were observed. Moreover, the FLC recovery using cellulose filters compared to polysulfone filters was higher and had a better reproducibility. Cellulose filters were therefore used for the subsequent validation procedure. The quantification limit was 0.195 mgl(-1). Standard curves with a quadratic regression coefficient > or = 0.9999 were obtained in the concentration range of 0.195-100 mgl(-1). The inter and intra-run accuracies and precisions over the clinically relevant concentration range, 1.875-60 mgl(-1), fell well within the +/-15% variation recommended by the current guidelines for the validation of analytical methods. Furthermore, no analytical interference was observed with commonly used antibiotics, antifungals, antivirals and immunosuppressive agents. Ultra-filtration of plasma with cellulose filters permits the extraction of FLC from small volumes (240 microl). The determination of FLC concentrations by HPLC after this single-step procedure is selective, precise and accurate.
Resumo:
Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity.
Resumo:
Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.
Resumo:
This study presents an evaluation of a pilot multistage filtration system (MSF) with different dosages, 131 mg L-1 and 106 mg L-1, of the natural coagulant extracted from Moringa oleifera seeds in pre-filtration and slow filtration stages, respectively. The system was comprised by a dynamic pre-filter unit, two upflow filters in parallel and four slow filters in parallel, and in one of the four filters had the filter media altered. The performance of the system was evaluated by monitoring some water quality parameters such as: turbidity, apparent color and slow filter load loss. The stages that have received the coagulant solution had better treatment efficiency compared with the steps without it. However, the direct application of the coagulant solution in the slow filter caused rapid clogging of the non-woven blanket and shorter career length.
Resumo:
Direct flow injection electrospray ionization ion trap tandem mass spectrometry (ESI-IT-MS/MS) was used to investigate the polyphenolic compounds present in an infusion from the barks of Hancornia speciosa Gom. (Apocynaceae), a native Brazilian plant popularly known as 'mangabeira', used as a source of nutrition and against gastric disorders. After a simple sample filtration pretreatment the characteristic fingerprint of the infusion was performed in negative ion ESI mode in a few minutes. At low capillary-voltage activation, the deprotonated molecules ([M-H](-)) were observed and using collision-induced dissociation the product ion spectra showed the presence of a homologous series of B-type proanthocyanidins, as well as another series containing their respective C-glycosylated derivatives, with a degree of polymerization from 1 up to 6 units of interlinked catechins. Therefore, direct flow injection allowed us to identify the key compounds without preparative isolation of the components. Copyright (C) 2007 John Wiley & Sons, Ltd.