945 resultados para DIRECT ELECTRON-TRANSFER
Resumo:
Horseradish peroxidase (HRP) was incorporated into multiwalled carbon nanotube/thionine/Au (MTAu) composite film by electrostatic interactions between positively charged HRP and negatively charged MTAu composite. The results of electrochemical impedance spectroscopy (EIS) confirmed adsorption of HRP on the surface of MTAu modified GC electrode.
Resumo:
It was found that silicon dioxide (SiO2) nanoparticles modified onto glassy carbon (GC) electrode exhibited a dramatic promotion on the direct electron transfer of Cytochrome c (Cyt c). The corresponding mechanism was discussed based on the electrochemical characteristics and a spatial geometrical model of the bifunctional structure. The model could offer insight to the study of biosensors and bioreactors without chemical mediator and serve as a basis for their fabrication. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).
Resumo:
Quasi-reversible and direct electrochemistry of cytochrome c (cyt. c) has been obtained at a novel electrochemical interface constructed by self-assembling gold nanoparticles (GNPs) onto a three-dimensional silica gel network, without polishing or any modification of the surface. A cleaned gold electrode was first immersed in a hydrolyzed sol of the precursor (3-mercaptopropyl)-trimethoxysilane to assemble three-dimensional silica gel, then the GNPs were chemisorbed onto the thiol groups of the sol-gel network and modified the kinetic barrier of this self-assembled silicate film. Cyclic voltammetry and AC impendance spectroscopy were performed to evaluate electrochemical properties of the as prepared interface. These nanoparticle inhibits the adsorption of cyt. c onto bare electrode and acts as a bridge of electron transfer between protein and electrode.
Resumo:
We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.
Resumo:
A direct, quasi-reversible electrochemical reaction of horse heart hemoglobin without further purification was obtained for the first time at the indium oxide electrode when oxygen was removed from the solution and hemoglobin molecules. It was found that removing oxygen from the solution and hemoglobin molecules is an important factor for obtaining the quasi-reversible electrochemical reaction of hemoglobin.
Resumo:
The monolayer of cytochrome c oxidase maintaining physiological activity and attached covalently to the self-assembled monolayers of 3-mercaptopropionic acid (MPA) on a gold electrode was obtained. The results of cyclic voltammetry show that direct electron transfer between cytochrome c oxidase and the electrode surface is a fast and diffusionless process. MPA has a dual role as both electrode modifier and the bridging molecule which: keeps cytochrome c oxidase at an appropriate orientation without denaturation and enables direct electron transfer between the protein and the modified electrode. Immobilized cytochrome c oxidase exhibits biphasic phenomena between the concentration of the electrolyte and the normal potentials; meanwhile its electrochemical behavior is also influenced by the buffer components. The quasi-reversible electron transfer process of cytochrome c oxidase with formal potential 385 mV vs. SHE in 5mM phosphate buffer solution (pH 6.4) corresponds to the redox reaction of cyt a(3) in cytochrome c oxidase, and the heterogeneous electron transfer rate constant obtained is 1.56 s(-1). By cyclic voltammetry measurements, it was observed that oxidation and reduction of cytochrome c in solution were catalyzed by the immobilized cytochrome c oxidase. This cytochrome c oxidase/MPA/Au system provides a good mimetic model to study the physiological functions of membrane-associated enzymes and hopefully to build a third-generation biosensor without using a mediator.
Resumo:
The electrochemistry of cytochrome c was studied at the PVP-modified gold electrode. It was found that the promoter effect is related to the amount of PVP at the gold electrode. From our results, it can be seen that the nitrogen element in the polymer is important for accelerating the electron transfer of cytochrome c.
Resumo:
A mediatorless horseradish peroxidase (HRP) enzyme electrode operated in nonaqueous media is constructed by cryohydrogel immobilization.
Resumo:
The direct electron transfer process of horse heart myoglobin, which was immobilized into a new type of cryo-hydrogel membrane on a glassy carbon electrode surface, was studied and the characteristics of this cryo-hydrogel immobilized protein electrode were discussed.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.
Resumo:
The heterogeneous electron transfer reaction of hemeproteins including hemoglobin, myoglobin and cytochrome C at Pt mesh electrode adsorbed methylene blue has been investigated. Thin-layer spectroelectrochemical technique was used for observing the electron transfer processes of three kinds of proteins, and the corresponding electrode rate constants were measured.
Resumo:
Objectives To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. Results A maximum power output of 114 ± 6 mWm−2 was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm−2. The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. Conclusion S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Resumo:
Cytochrom c Oxidase (CcO), der Komplex IV der Atmungskette, ist eine der Häm-Kupfer enthaltenden Oxidasen und hat eine wichtige Funktion im Zellmetabolismus. Das Enzym enthält vier prosthetische Gruppen und befindet sich in der inneren Membran von Mitochondrien und in der Zellmembran einiger aerober Bakterien. Die CcO katalysiert den Elektronentransfer (ET) von Cytochrom c zu O2, wobei die eigentliche Reaktion am binuklearen Zentrum (CuB-Häm a3) erfolgt. Bei der Reduktion von O2 zu zwei H2O werden vier Protonen verbraucht. Zudem werden vier Protonen über die Membran transportiert, wodurch eine elektrochemische Potentialdifferenz dieser Ionen zwischen Matrix und Intermembranphase entsteht. Trotz ihrer Wichtigkeit sind Membranproteine wie die CcO noch wenig untersucht, weshalb auch der Mechanismus der Atmungskette noch nicht vollständig aufgeklärt ist. Das Ziel dieser Arbeit ist, einen Beitrag zum Verständnis der Funktion der CcO zu leisten. Hierzu wurde die CcO aus Rhodobacter sphaeroides über einen His-Anker, der am C-Terminus der Untereinheit II angebracht wurde, an eine funktionalisierte Metallelektrode in definierter Orientierung gebunden. Der erste Elektronenakzeptor, das CuA, liegt dabei am nächsten zur Metalloberfläche. Dann wurde eine Doppelschicht aus Lipiden insitu zwischen die gebundenen Proteine eingefügt, was zur sog. proteingebundenen Lipid-Doppelschicht Membran (ptBLM) führt. Dabei musste die optimale Oberflächenkonzentration der gebundenen Proteine herausgefunden werden. Elektrochemische Impedanzspektroskopie(EIS), Oberflächenplasmonenresonanzspektroskopie (SPR) und zyklische Voltammetrie (CV) wurden angewandt um die Aktivität der CcO als Funktion der Packungsdichte zu charakterisieren. Der Hauptteil der Arbeit betrifft die Untersuchung des direkten ET zur CcO unter anaeroben Bedingungen. Die Kombination aus zeitaufgelöster oberflächenverstärkter Infrarot-Absorptionsspektroskopie (tr-SEIRAS) und Elektrochemie hat sich dafür als besonders geeignet erwiesen. In einer ersten Studie wurde der ET mit Hilfe von fast scan CV untersucht, wobei CVs von nicht-aktivierter sowie aktivierter CcO mit verschiedenen Vorschubgeschwindigkeiten gemessen wurden. Die aktivierte Form wurde nach dem katalytischen Umsatz des Proteins in Anwesenheit von O2 erhalten. Ein vier-ET-modell wurde entwickelt um die CVs zu analysieren. Die Methode erlaubt zwischen dem Mechanismus des sequentiellen und des unabhängigen ET zu den vier Zentren CuA, Häm a, Häm a3 und CuB zu unterscheiden. Zudem lassen sich die Standardredoxpotentiale und die kinetischen Koeffizienten des ET bestimmen. In einer zweiten Studie wurde tr-SEIRAS im step scan Modus angewandt. Dafür wurden Rechteckpulse an die CcO angelegt und SEIRAS im ART-Modus verwendet um Spektren bei definierten Zeitscheiben aufzunehmen. Aus diesen Spektren wurden einzelne Banden isoliert, die Veränderungen von Vibrationsmoden der Aminosäuren und Peptidgruppen in Abhängigkeit des Redoxzustands der Zentren zeigen. Aufgrund von Zuordnungen aus der Literatur, die durch potentiometrische Titration der CcO ermittelt wurden, konnten die Banden versuchsweise den Redoxzentren zugeordnet werden. Die Bandenflächen gegen die Zeit aufgetragen geben dann die Redox-Kinetik der Zentren wieder und wurden wiederum mit dem vier-ET-Modell ausgewertet. Die Ergebnisse beider Studien erlauben die Schlussfolgerung, dass der ET zur CcO in einer ptBLM mit größter Wahrscheinlichkeit dem sequentiellen Mechanismus folgt, was dem natürlichen ET von Cytochrom c zur CcO entspricht.