917 resultados para DIRAC PARTICLES
Resumo:
It has been noted that at high energy the Ricci scalar is manifested in two different ways, as a matter field as well as a geometrical field (which is its usual nature even at low energy). Here, using the material aspect of the Ricci scalar, its interaction with Dirac spinors is considered in four-dimensional curved spacetime. We find that a large number of fermion-antifermion pairs can be produced by the exponential expansion of the early universe.
Resumo:
Vita.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Studies on Pseudoscalar Meson Bound States and Semileptonic Decays in a Relativistic Potential Model
Resumo:
In this thesis quark-antiquark bound states are considered using a relativistic two-body equation for Dirac particles. The mass spectrum of mesons includes bound states involving two heavy quarks or one heavy and one light quark. In order to analyse these states within a unified formalism, it is desirable to have a two-fermion equation that limits to one body Dirac equation with a static interaction for the light quark when the other particle's mass tends to infinity. A suitable two-body equation has been developed by Mandelzweig and Wallace. This equation is solved in momentum space and is used to describe the complete spectrum of mesons. The potential used in this work contains a short range one-gluon exchange interaction and a long range linear confining and constant potential terms. This model is used to investigate the decay processes of heavy mesons. Semileptonic decays are more tractable since there is no final state interactions between the leptons and hadrons that would otherwise complicate the situation. Studies on B and D meson decays are helpful to understand the nonperturbative strong interactions of heavy mesons, which in turn is useful to extract the details of weak interaction process. Calculation of form factors of these semileptonic decays of pseudo scalar mesons are also presented.
Resumo:
Up to now, the only known exact Foldy-Wouthuysen transformation (FWT) in curved space is that concerning Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the conformal coupling is one-third of the corresponding term in the fermionic case. There are some arguments in the literature that seem to favor the choice lambda=1/6. We rehearse a number of claims of these works.
Resumo:
By introducing local Z(N) symmetries with N=11,13 in two 3-3-1 models, it is possible to implement an automatic Peccei-Quinn symmetry, keeping the axion protected against gravitational effects at the same time. Both models have a Z(2) domain wall problem and the neutrinos are strictly Dirac particles.
Resumo:
The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]
Resumo:
Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities whether considered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in which they are studied, a number of differences among them occur. Furthermore, we pay attention to some consequences of these objects when they act upon the usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
We show that the conditions which originate the spin and pseudospin symmetries in the Dirac equation are the same that produce equivalent energy spectra of relativistic spin-1/2 and spin-0 particles in the presence of vector and scalar potentials. The conclusions do not depend on the particular shapes of the potentials and can be important in different fields of physics. When both scalar and vector potentials are spherical, these conditions for isospectrality imply that the spin-orbit and Darwin terms of either the upper component or the lower component of the Dirac spinor vanish, making it equivalent, as far as energy is concerned, to a spin-0 state. In this case, besides energy, a scalar particle will also have the same orbital angular momentum as the (conserved) orbital angular momentum of either the upper or lower component of the corresponding spin-1/2 particle. We point out a few possible applications of this result. © 2007 The American Physical Society.
Resumo:
Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found, and the vacuum polarization contributions and particle creation contributions to these mean values are isolated in the large T limit; we also relate the vacuum polarization contributions to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2 + 1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a semiclassical approximation for carriers and does not use any statistical assumptions inherent in the Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the graphene, taking into account the backreaction of the matter field to the applied external field. We find solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the effective mean electromagnetic field and effective mean values of the current and the energy-momentum tensor. The nonlinear and linear I-V characteristics experimentally observed in both low-and high-mobility graphene samples are quite well explained in the framework of the proposed approach, their peculiarities being essentially due to the carrier creation from the vacuum by the applied electric field. DOI: 10.1103/PhysRevD.86.125022